Palladium-catalysed Coupling of Trialkylstannyltetrathiafulvalenes with Aryl Halides

Masahiko Iyoda,* ^a Yoshiyuki Kuwatani, ^b Nobuhiko Ueno^b and Masaji Oda^b

^a Department of Chemistry, Faculty of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-03, Japan ^b Department of Chemsitry, Faculty of Science, Osaka University, Toyonaka, Osaka 560, Japan

Trialkylstannyltetrathiafulvalenes undergo palladium-catalysed cross- and homo-coupling reactions to give aryl-substituted tetrathiafulvalenes and bitetrathiafulvalene; the methodology has been applied to the synthesis of *p*-phenylenebistetrathiafulvalene and 2,5-thiophenediylbistetrathiafulvalene.

Although tetrathiafulvalene (TTF) 1 is of great importance as a π -electron donor in organic conductors, the methodology for preparing monofunctionalized TTF derivatives is still very limited. We now describe a novel method for the preparation of aryl-substituted tetrathiafulvalenes consisting of the synthesis of trialkylstannyl-TTF 2 followed by the palladium-catalysed coupling of 2 with aryl halides.

The TTF monoanion, which can be easily prepared from TTF with butyllithium or lithium diisopropylamide, is known to disproportionate even at low temperature.¹ Therefore, monometalated TTF derivatives are usually difficult to employ directly for cross-coupling reactions with organic halides. However, monotrialkyltin-substituted derivatives of TTF can be prepared and employed for palladium-catalysed coupling reactions.

Trialkylstannyltetrathiafulvalenes 2 can be prepared from monolithiated TTF with trialkyltin chloride. Thus, reaction of TTF with 1 equiv. of buthyllithium, followed by treatment with tributyl- or trimethyl-tin chlorides gave 2a and 2b in 75 and 85% yields, respectively. Tributylstannyl-TTF 2a can be isolated by column chromatography on deactivated alumina (activity: V). However, trimethylstannyl-TTF 2b was obtained as a mixture containing a small amount of TTF, after column chromatography on deactivated alumina. Therefore, a mixture containing over 90% of 2b was used for further reactions.

A typical procedure for the palladium-catalysed crosscoupling reaction² involves reaction of aryl halide (1 equiv.) with trialkylstannyl-TTF 2 (1 equiv.) in the presence of Pd(PPh₃)₄ (0.1 equiv.) in refluxing toluene. The product 3 are

Scheme 1 Reagents and conditions: i, butyllithium, THF, -78 °C; ii, R₃SnCl then -78 °C, room temperature, 3 h; iii, Pd(PPh₃)₄, toluene, reflux

Scheme 2 Reagents and conditions: i, PdCl₂(CH₃CN)₂, HMPA, room temperature; ii, Pd(PPh₃)₄, toluene, reflux

Table 1 Reaction of trialkylstannyl-TTF derivatives 2 with the aryl halides in the presence of $Pd(PPh_3)_4$

Reagent	Aryl halide	Time/h	Yield ^a (%)	Product
2b	Iodobenzene	3	67	3a
2b	Bromobenzene	5	59	3a
2a	Iodobenzene	5	53	3a
2b	p-Bromobenzonitrile	3	98	3b
2a	<i>p</i> -Bromobenzonitrile	5	95	3b
2b	<i>p</i> -Iodoanisole	5	33	3c
2b	2-Bromopyridine	4	82	3d
2a	2-Bromopyridine	6	57	3d
2b	2-Bromothiophene	3	62	3e

a Isolated yield.

purified by column chromatography on alumina (activity: III). As shown in Table 1, the reaction of iodobenzene (1 equiv.) with trimethylstannyl-TTF **2b** (1 equiv.) in refluxing toluene produces $3a^3$ in 67% yield, whereas the palladium-catalysed reaction of both bromobenzene with **2b** and iodobenzene with **2a** gave **3a** in somewhat lower yields. The presence of electron-withdrawing groups on the aryl halide raises the yield of cross-coupling reactions. Thus, the palladium-catalysed reaction of *p*-bromobenzonitrile with **2a** and **2b** produces **3b** in

Table 2 Cyclic voltammetric^a and melting-point data data for TTF derivatives

Compou	nd $E_1^{\frac{1}{2}}/V$	$E_2^{\frac{1}{2}}/\mathbf{V}$	M.p./°C	
TTF	0.36	0.74		
3a	0.38	0.80	79.5-81 (lit. ³ ; 78-81)	
3b	0.47	0.87	210.5–213 (decomp.)	
3c	0.38	0.80	160–162 (decomp.)	
3d	0.39	0.85	173–175	
3e	0.41	0.80	79-80	
4	0.43	0.84	225-226 (decomp.)	
5	0.35	0.82	237–239 (decomp.) (lit. ⁵ ;	
			241.9-242.4)	
6	0.38	0.81	212-214 (decomp.)	

^{*a*} Experimental conditions: NBu_4^+ ClO₄⁻ (0.1 mol dm⁻³) in dry benzonitrile under argon at 20 °C, vs. Ag/Ag Cl, Pt electrode.

98 and 95% yields, respectively. However, the similar cross-coupling of *p*-iodoanisole with **2b** affords **3c** only in 33% yield. Interestingly, the palladium-catalysed coupling of 2-bromopyridine with **2b** produces **3d** in 82% yield, whereas the similar reaction with **2a** gives **3d** in only 57% yield. The coupling reaction of 2-bromothiophene with **2b** under the same conditions also gives the coupling product **3e** in 62% yield.

Furthermore, the palladium-catalysed homo-coupling of 2 occurs using $PdCl_2(CH_3CN)_2$ in hexamethylphosphoric triamide (HMPA).⁴ Thus, the reactions of **2a** and **2b** in the presence of 0.5 equiv. of $PdCl_2(CH_3CN)_2$ in HMPA at room temperature produces bitetrathiafulvalene **4** in 25 and 62% yields, respectively. As to the palladium-catalysed couplings, trimethylstannyl derivative always gives better results than the tributylstannyl derivatives.

The palladium-catalysed coupling described in this paper can be employed for the synthesis of useful TTF derivatives. Thus, the reaction of *p*-diiodobenzene with 2 equiv. of **2b** in the presence of 0.2 equiv. of Pd(PPh_3)_4 in refluxing toluene resulted in the formation of *p*-phenylenebistetrathiafulvalene 5^5 in 61% yield. In a similar manner, the cross-coupling of 2,5-dibromothiophene with 2 equiv. of **2b** in the presence of Pd(PPh_3)_4 (0.2 equiv.) produces the corresponding coupling product **6** in 52% yield.

Upon electrochemical oxidation (cyclic voltammetry, Table 2), aryltetrathiafulvalenes 3 show similar $E_1^{\frac{1}{4}}$ -values except for 3b, in which the presence of an electron-withdrawing cyano group increases the ionization potential. As has been reported previously, tetramethylthiobitetrathiafulvalene shows three redox waves.⁶ However, 4 exhibits two redox waves corresponding to two two-electron transfers. Interestingly, 5 and 6 also show only two oxidation waves. Therefore, the compounds 4–6 are oxidized by two two-electron steps.

Received, 23rd September 1991; Com. 1/04881C

References

- 1 D. L. Green, J. Org. Chem., 1979, 44, 1476.
- 2 J. K. Stille and B. L. Groh, J. Am. Chem. Soc., 1987, 109, 813 and references cited therein.
- 3 M. L. Kaplan, R. C. Haddon, F. Wudl and E. D. Feit, J. Org. Chem., 1978, 43, 4642.
- 4 G. A. Tolstikov, M. S. Miftakhov, N. A. Danilova, Ya. L. Vel'der and L. V. Spirikhim, *Synthesis*, 1989, 633; S. Kanemoto, S. Matsubara, K. Oshima, K. Utimoto and H. Nozaki, *Chem. Lett.*, 1987, 5.
- 5 M. L. Kaplan, R. C. Haddon and F. Wudl, J. Chem. Soc., Chem. Commun., 1977, 388.
- 6 H. Tatemitsu, E. Nishikawa, Y. Sakata and S. Misumi, Synthetic Metals, 1987, 19, 565.