Effect of Linker Length on DNA-binding Affinity, Cross-linking Efficiency and Cytotoxicity of C8-linked Pyrrolobenzodiazepine Dimers

D. Subhas Bose,^a Andrew S. Thompson,^a Melissa Smellie,^b Mark D. Berardini,^b John A. Hartley,^b Terence C. Jenkins,^c Stephen Neidle^c and David E. Thurston^{* a}

^aDivision of Medicinal Chemistry, School of Pharmacy and Biomedical Sciences, University of Portsmouth, King Henry 1st Street, Portsmouth PO? 2DZ, UK

^bDepartment of Oncology, University College and Middlesex School of Medicine, 91 Riding House Street, London WlP8BT, UK

^c*Cancer Research Campaign Biomolecular Structure Unit, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK*

An efficient synthesis of a homologous series of C8-linked pyrrolobenzodiazepine dimers is reported; compounds with an odd number of methylenes $(n = 3 \text{ or } 5)$ in the linker show a higher affinity for DNA, enhanced cross-linking efficiency, and are more cytotoxic compared with compounds with either $n = 4$ or 6.

It is generally accepted that a DNA interstrand cross-link is a highly cytotoxic lesion, $1a$ and many bifunctional alkylating agents such as the nitrogen mustards and cisplatin are used clinically as antitumour agents. *lb* Although the basis for tumour-cell selectivity remains unknown, it is possible that cross-linked DNA adducts prove challenging to cellular repair mechanisms,² or that the agents target genes associated with the control of cell growth.³ We recently reported⁴ the design and synthesis of a novel irreversible guanine-specific DNA interstrand cross-linking agent, DSB-120 **(Sa;** *n* = 3), based on the naturally occurring pyrrolo $[2, 1-c][1, 4]$ benzodiazepine (PBD) antitumour antibiotic DC-81 **(lO),5** which bonds in the minor groove of DNA *via* covalent interaction between the Cll-position and N2 of guanine. PBD monomers are known to be sequence selective with a preference for PuGPu triplets.6 NMR spectroscopy and modelling studies indicate that DSB-120 spans six DNA base-pairs (twice the binding-site size of DC-81) and actively recognises a 5'-GATC sequence.4 We report here the synthesis of a homologous series of C8-linked bifunctional DNA alkylating agents in order to probe the

effect of linker length on binding affinity, DNA cross-linking efficiency and cytotoxicity .

The overall synthetic strategy is shown in Scheme 1. **A** versatile approach has been developed to join two units of vanillic acid 1 with α , ω -dihaloalkanes of varying length to provide the dimer acids **2a-d.** Dibromo- and dichloro-alkanes gave inferior yields compared to the diiodo-compounds, and varying the chain length from $n = 3$ to 6 did not affect the efficiency of the reaction. By using this approach, the formation of mixtures of mono- and bis-alkylated products is avoided. The procedure involved refluxing **1** with the diiodoalkanes in the presence of aq. NaOH for 48 h to afford 2a-d in 33-65% yields. However, all attempts to obtain the nitro acids of type *5* by direct nitration of **2a-d** failed using a variety of reaction conditions, including $NaNO₂-H₂SO₄$, $SnCl₄-HNO₃$ and $H₂SO₄-HNO₃$, owing to the insoluble nature of the dimer acids. Following conversion into the corresponding methyl esters **3a-d,** nitration with SnC14- HN03 proceeded smoothly to afford the nitro esters **4a-d** in high yield. An initial attempt to hydrolyse the methyl ester **4a**

Scheme 1 *Reagents and conditions:* i, I-(CH_{2)n}-I, aq. NaOH, THF, reflux, 48 h; ii, dimethyl sulfate, K₂CO₃, acetone, reflux, 30 min; iii, SnCl₄, HNO₃, CH₂Cl₂, -20 °C, 15 min; iv, aq. NaOH, THF; v, oxalyl chloride, THF, Et₃N, H₂O, (2S)-pyrrolidine-2-carbaldehyde diethyl thioacetal, $\frac{8}{3}$ h; vi, SnCl₂.2H₂O, MeOH, reflux, 40 min; vii, HgCl₂, CaCO₃, MeCN, H₂O, 2.5 h

Table 1 Thermal denaturation (ΔT_m) values), DNA cross-linking efficiency, and *in vitro* cytotoxicity data for the C8-linked PBD dimers and DC-81

Compound	Linker $n =$		$C_{50\%}/\mu$ mol dm^{-3b}	IC_{50}/μ mol dm ⁻³				
		$\Delta T_{\rm m}$ /°C ^a		11210^c	ADJ/PC6 ^c	CH1 ^c	K_{562} ^d	
8a		15.1	0.055	0.01	0.0005	0.003	0.2	
8b		4.1	$_{1.00}$	1.2	0.35	0.05	2.5	
8с		8.1	0.070	0.0045	0.0004	0.00032	0.5	
8d	O	7.0	0.750	0.34	0.002	0.002	1.0	
$DC-81(10)$		0.7		0.38	0.33	0.1	NA	
Melphalan	----		20.0	3.0	0.02	2.0	35	

Thermal denaturation studies with calf thymus DNA (see text). *b* Concentration of drug required for 50% cross-linking of pBR322 DNA (see text). *c* IC₅₀ is the drug dose that inhibits cell growth by 50% compared with solvent controls. Compounds were dissolved in DMSO to provide a final concentration of 0.05% DMSO. Incubation times (37 °C) were: L1210, 3 days; ADJ/PC6, 4 days; CH1, 9 days; ^{*d*} K₅₆₂ is a human leukaemia cell line in which IC₅₀ values were measured using an MTT assay following a 1 h exposure to drug. NA = Result not available.

by refluxing in aq. NaOH gave a high-melting solid identified as the diacid hydrolysis product **9** in which demethylation of the aromatic ether had occurred. The electron-withdrawing p-nitro groups may be responsible for this phenomenon *.7* However, mild hydrolysis of the ester with aq. NaOH at room temperature for 6 h afforded **5a** in quantitative yield. Coupling of nitro acids **5a-d** with **(2S)-pyrrolidine-2-carbaldehyde** diethyl thioacetals afforded the bis(amides) **6a-d** in approximately 65% yield, which were subsequently reduced to the amino thioacetals **7a-d**. Cyclization[§] with $HgCl₂-CaCO₃$ afforded the target C8-dimers **8a-d** in good yields.?

The general DNA-binding affinity of PBD dimers **8a-d** was examined by thermal denaturation studies.9 For a 5 : 1 mol ratio of DNA-ligand (calf thymus DNA concentration $= 100$ umol dm⁻³, 10 mmol dm⁻³ phosphate buffer, pH 7.0) an increase in helix melting temperature (ΔT_m) is observed for each dimer compared with untreated control DNA following incubation at 37 "C for 18 h (Table 1). In the same experiment, the monomer DC-81 (10) gives only a small increase in T_m , consistent with the notion that the PBD dimers **8a-d** stabilise DNA through the formation of interstrand cross-links.

The DNA cross-linking efficiency of dimers **8a-d** was investigated using an assay involving linear double-stranded

DNA derived from the plasmid pBR322 (4362 bp, linearised with *Hind* III and then $32P$ -end-labelled).¹⁰ Following complete denaturation to the single-stranded form, the presence of an interstrand cross-link results in renaturation to doublestranded DNA during electrophoresis in a neutral agarose gel (Fig. 1). Quantitation of the autoradiograph using laser densitometry allowed calculation of the concentration of each agent required to effect 50% cross-linking (Table 1).

Compounds **8a** $(n = 3)$ and **8c** $(n = 5)$ are broadly similar in cross-linking efficiency, whereas dimers $8b$ ($n = 4$) and $8d$ ($n = 1$) = 6) approximately 18- and 14-fold less efficient, respectively. This data is consistent with the determined $\Delta T_{\rm m}$ values, which reflect the differences in ability of the compounds to stabilise DNA helix-coil transitions. Compound **8a** binds to doublestranded DNA more tightly than **8c** even though they have similar cross-linking efficiencies. This may reflect differences in their non-covalent binding, since they differ in isohelicity with respect to the DNA minor groove. It is also possible that mono adducts or intrastrand cross-links can be formed that would influence the thermal denaturation data but not the cross-linking assay.

Interestingly, in vitro cytotoxicity data in human K_{562} and rodent ADJ/PC6 cell lines (Table 1) correlate with both the

t All compounds gave satisfactory spectral data: selected data for **8a:** ¹H NMR (CDCl₃, 270 MHz): δ 2.01–2.17 (m, 2H), 2.28–2.45 (m, 8H), 3.50-3.87 (m, 6H), 3.92 **(s,** 6H), 4.22-4.33 (m, 4H), 6.85 **(s,** 2H), 7.51 46.7, 53.7. 56.1, 65.4, 110.7, 111.6, 120.3, 140.6, 147.8, 150.6, 162.4, 164.6. **(s,** 2H), 7.66 (d, 2H, 54.4 Hz). 13C NMR (CDC13): *b* 24.2, 28.8,29.6,

Fig. 1 Autoradiograph of a neutral agarose gel showing DNA interstrand cross-linking by 8a-d in linear ³²P-end-labelled pBR322 DNA. Drug reactions $(2 \text{ h at } 37 \degree \text{C})$ were in 25 mmol dm⁻³ triethanolamine/1mmol dm⁻³ EDTA pH 7.2 buffer with 10 ng DNA in a final volume of 50 μ l. Reaction was terminated by addition of an equal volume of 0.6 mol dm⁻³ sodium acetate, 20 mmol dm⁻³ EDTA and 100 μ g cm⁻³ tRNA, and the DNA precipitated with ethanol. Dried pellets were taken up in strand separation buffer (30% DMSO in 1 mmol dm-3 EDTA). Denaturation for 2 min at 90 "C was followed by immediate chilling in an ice-water bath. Electrophoresis was carried out on 0.8% submerged horizontal agarose gels at 40 V for 16 h with tris(acetate) running buffer. Double- (\overline{DS}) and singlestranded **(SS)** DNA were quantitated by laser densitometry. 0 (nd) is the non-denatured double-stranded DNA control.

thermal denaturation data and the cross-linking efficiencies. There is a similar correlation for the rodent L1210 and human CH1 cell lines, except that the positions of **8a** and **8c** in the overall rank-order are transposed. As shown in Table 1, **8a** is approximately 300-fold more efficient at cross-linking DNA than the clinically-used major-groove cross-linking agent melphalan, and is significantly more cytotoxic across the four cell lines studied. Considering the lower activity of the monomer DC-81, this data suggests that interstrand crosslinks probably represent the cytotoxic lesions leading to cell death.

In summary, an efficient synthesis of C8-linked pyrrolobenzodiazepine dimers of varying linker length has been achieved. We find a significant correlation between DNAbinding affinity, cross-linking efficiency and cytotoxicity, with the $n = 3$ and $n = 5$ homologues **8a** and **8c** displaying optimal effects compared to the dimers with an even number of methylenes in the linker.

We acknowledge generous support for various aspects of this work from the SERC (GR/F52675) and the Cancer Research Campaign. Professor Ken Harrap and Phyllis Goddard (Institute of Cancer Research) are thanked for providing the cytotoxicity data.

Received, 9th .July 1992; Corn. 2103631 B

References

- 1 *(a)* K. W. Kohn, in *Molecular Aspects of Anticancer Drug Action,* ed. **S.** Neidle and M. J. Waring, Macmillan Press, London, 1983, **p.** 315-361; *(h)* **W.** B. Pratt and R. W. Ruddon, *The Anticancer Drugs,* OUP, New York, 1979.
- 2 P. B. Hopkins, T. **J.** Millard, **J.** Woo, M. F. Weidner, J. J. Kirchner, **S.** Th. Sigurdsson and **S.** Raucher, *Tetrahedron,* 1991, **47,** 2475.
- **3** W. B. Mattes, J. A. Hartley. K. **W.** Kohn and D. W. Matheson, *Carcinogenesis,* 1988, **9,** 2065.
- 4 D. **S.** Bose, A. **S.** Thompson, J. Ching, J. A. Hartley, M. D. Berardini, T. C. Jenkins, **S.** Neidle, L. H. Hurley and D. E. Thurston, *J. Am. Chern. Soc.,* 1992, **114,** 4939.
- 5 D. **S.** Bose, G. B. Jones and D. E. Thurston, *Tetrahedron,* 1992, **48,** 751, and references cited therein.
- 6 L. H. Hurley, T. Reck, D. E. Thurston, D. R. Langley, K. G. Holden, R. P. Hertzberg, J. R. E. Hoover, G. Gallagher, Jr., L. F. Faucette, S.-M. Mong and R. K. Johnson, *Chem. Res. Toxicol.,* 1988, **1,** 258.
- 7 M. Greenwood and R. Robinson. *J. Chem. Soc.,* 1932, 1370.
- 8 D. R. Langley and D. E. Thurston, *1. Org. Ckem.,* 1987, **52,** 91.
- 9 G. B. Jones, C. L. Davey, T. C. Jenkins, A. Kamal, G. G. Kneale, **S.** Neidle, G. D. Webster and D. E. Thurston, *Anti-Cancer Drug Design,* 1990, *5,* 249.
- 10 J. A. Hartley, M. D. Berardini and R. L. Souhami, *Anal. Biochern.,* 1991, **193,** 131.