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Electrophile Induced Reactions of Medium Ring Vinyl- and 1,2-Epoxy-silanes and Related
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Deuterium labelling studies confirm extensive trans-annular participation in acidolysis, acetylation and brominolysis of
1,2-epoxy-1-trimethylsilylcyclooctane and (E)-1-trimethylsilylcyclooctene, and require revision of previous mechanistic

proposals.

Although the electrophile induced reactions of simple vinyl-
and 1,2-epoxy-silanes are qualitatively understood,! the
cyclooctyl derivatives lead to products consistent with trans-
annular participation.2# However, the suggested mechan-
isms> are strongly inferential and in part, are unconvincing.
We are now able to clarify important aspects of these reactions
from studies utilising 2ZH-labelled silanes.

(E)-1-Trimethylsilylcyclooctene 1 was readily availables.6
and the key 2H-labelled analogue 2 was obtained by a
sequence commencing with the acetolysis of [1-2H;]cyclooctyl
toluene-p-sulfonate.”8 This provides cyclooctyl acetate
labelled at C-5 (ca. 60%) and C-1 (40%), as a result of 1,5-H
shifts associated with carbocation formation. Acetate hydroly-
sis, oxidation (Jones reagent) (which removes 2H from C-1),
tosylhydrazone formation and silylation> provides 2. Epoxida-
tion of 1 and 2 with m-chloroperbenzoic acid provides
epoxysilanes 3 and 4, respectively with the latter being a 50 : 50
epimeric mixture with deuterium either cis or trans to the
epoxide.T

Acidolysis of 3 and 4: Treatment of 3 with BF;-OEt, has
been reported? to yield exclusively endo-cis-bicyclo[3.3.0]oc-

t This is apparent from a duality of 2H-isotope effects on certain of the
13C chemical shifts.

tan-2-ol 10, and this was considered? to arise by deprotonation
and trgns-annular electron-pair shift concerted with epoxide
ring opening to yield either 8 («-opening) or 9 (-opening).
Tertiary silane 8 was favoured and then formed 10 in an
unspecified way. This reported? proposal is shown in Scheme
1. (Note that cis, rather than the trans-hydroxysilane 8
suggested? and shown in Scheme 1, would result from Sy2
opening of the Lewis acid complexed epoxysilane).
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Repetition of this reaction using 4 led to the bicyclic alcohol
1229 as the exclusive product, and detailed 13C, !H and 2H
NMR studies on it established that the 2H label was equally
distributed between C-1 and C-5 in 12. This followed from the
2H isotope effects® on the C-1 and C-5 chemical shifts (47.2
and 42.3, ppm respectively), and the close equiintense 2H
NMR signals at & 2.3, established by correlated spectra to
correspond to the H-1 and H-5 chemical shifts.10 The
proposed mechanism,? summarised in Scheme 1, is therefore
unimportant, as no frans-annular hydride shift was invoked.
We suggest that 1,5-hydride (or deuteride) shift is concerted
with a-opening!! of the complexed epoxide, with inversion at
both centres, to yield the all-cis silanell. The stereoelectronic
features of dual inversion permits migration of only one-half
of the 2H-label. Silane 11 now experiences 1,5-deoxysilyla-
tion, again with dual inversion to provide bicyclic alcohol 12
with the correct relative stereochemistry and 2H-distribu-
tion.12

Epoxystannane 5 also yields 10, whereas cyclopropylsilane
613.14 leads predominantly to endo-methyl derivative 13,
presumably by an analogous mechanism. The acetolysis!5 of
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cis-bicyclo[6.1.0]nonane 7,15 and various [2H;]-derivatives,6
proceeds with 1,5-hydride shifts to provide largely cis-4-
methylcyclooctyl acetate 14, consistent with the proposals in
Scheme 2. Exposure of 3 to aqueous dioxane-H,SO, also
leads to alcohol 10 (80%) together with a mixture of
cyclooctenols (ca. 20%),2 which are (Z)-cyclooctenols8 and
not derivatives of (E)-cyclooctene as originally claimed.2 The
well-precedented anti-elimination! of Me;SiOH from an
all-cis intermediate such as 15 would generate (E)-cycloocten-
5-ol 16 which could isomerize under the acidic conditions,!” to
which, however, bicyclic alcohol 10 is stable.

Acylation of 1 and 2: Treatment of 2 with MeCOCI under
Friedel-Craft conditions? provides a single ketone, which
epimerized on extended exposure to base. 13C, 'H and 2H
NMR studies!® established the kinetic formation of endo-
ketone 17, in which the 2H label was equally distributed
between the C-1 and C-5 positions. A 1,5-H (or D) shift to the
carbon bearing silicon!! and 1,5-desilylative ring closure with
inversion are key elements of Scheme 4. The previously
suggested® mechanism involving deprotonation and trans-
annular electron-pair shift is thus unimportant.

Brominolysis of 1 and 2: Treatment of 1 and 2 with bromine
at —78 °C yielded no bicyclic product, but 13C and ZH NMR
spectra established the presence of (Z)-5-bromocyclooctene
18 with approximately equal distribution of deuterium
between C-1 and C-5. This requires trans-annular hydride (or
deuteride) migration as previously inferred,* possibly result-
ing in formation of all-cis-silane 19. The route from 19 to
S-bromocyclooctene 18 is unclear, but (unprecedented) cis
elimination of Me;SiBr has been suggested. 4 Alternatively,
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anti-elimination would provide (E)-5-bromocyclooctene 20
which may suffer facile E — Z ring isomerisation in the
presence of the potent electrophiles, Me;SiBr and Br,. In the
cyclohexyl- and cycloheptyl-silane systems, the dibromo
adducts (e.g. 21) resulting from bromine addition to the vinyl
silanes are quite stable and facile cis-loss of Me;SiBr is not
observed.!l We are unsure why 1,5-loss of Me;SiBr does not
compete in the case of 19, to provide bicyclic bromide
product.

The central feature of the acid- and acyl-desilylation
reactions is proposed to be a facile and stereospecific
1,5-desilylative (or destannylative) ring closure. Solvolytic
studies with appropriate cis- and trans-trimethylsilyl- and
-stannylcyclooctanol and -cyclononanol derivatives are being
conducted to define this novel process.
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