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Sequential nitrogen-carbon and carbon-carbon bond formation, and an electrochemical Mo-N bond cleavage step, 
define a pathway to methyl esters of the amino acids glycine and alanine from the molybdenum nitride 
trans-[MoCI( N)(Ph2PCH2CH2PPh2)2], a key intermediate being the metallo-nitrogen ylide 
trans-[MoCl(NCHCO2Me)(Ph2PCH2CH2PPh2)2], the structure of which has been determined crystallographically. 

Nitride can be converted to alkylimide,14 thionitrosyl,2 
methyleneamide , cyanide, heterocumulene , or aminocarbyne 
groups536 by stepwise reactions at robust { M(R2PCH2- 
CH2PR2)2} centres (M = Mo or W; R = alkyl or aryl); under 
other conditions ammonia or methylamine7 can be released 
from the metal. In all cases the metal-tertiary phosphorus 
ligand assembly is conserved. 

These transformations suggested that it might be possible to 
exploit nitrides as reagents in organic synthesis; here we report 
some first steps in this direction. Sequential nitrogen-carbon 
and carbon-carbon bond formation , and an electrochemical 
Mo-N bond cleavage step, define a pathway to amino acids 
from a molybdenum nitride. A key intermediate in the 
synthesis is a metallo-nitrogen ylide, which can be viewed as 
providing the synthetic equivalent A. 

trans- [ MoC1( N) ( Ph2PCH2CH2PPh2)2] reacts cleanly with 
the methyl ester of iodoacetic acid to give the cation 
~~~~S-[MOC~(NCH~CO~M~)(P~~PCH~CH~PP~~)~] + B which 
was isolated as an air-stable, iodide salt (violet crystals, 65% 
yield) and characterised by 1H, 31P{ lH} and W{1H}NMR, 
and FT IR spectroscopy? (Scheme 1). 

The electron-withdrawing ester group allows facile deproto- 
nation of B at the a-carbon atom by Et,N, and trans- 
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Scheme 1 Formation of N-C and C-C bonds by stepwise alkylation, 
deprotonation and methylation reactions. The deprotonation is fully 
reversible. && represents the trans- { M O ( P ~ ~ P C H ~ C H ~ P P ~ ~ ) ~ }  
assembly. 

t ~~~~S-[MOC~(NCH~CO~M~)(P~~PCH~CH~PP~~)~] I (B iodide): lH 

NMR (CD2C12, 6 relative to tetramethylsilane, tms): 2.65 (2H, 
quartet, NCH2), 2.8-3.1 (8H, br. m, PCH2CH2P) with superimposed 
3.08 (3H, s,  OCH3) and 6.5-7.5 (40H, m, CH2PPh2); 31P{1H} NMR 
(CD2C12, 6 relative to trimethyl phosphite, tmp): -98 (s); l3C(lH+) 
NMR (CD2C12, 6 relative to tms): 27.3 (quintet, PCH2), 52.5 (s, 
OCH3), 63.3 (s, NCH2), 128-135 (m, PPh2) and 164.4 (s, CO); FT IR 
(Nujol mull; vlcm-l): 1753 (strong. YCO). 

[MoC~(NCHCO~M~)(P~~PCH~CH~PP~~)~] C$ was obtained 
as a moderately air-stable material (olive crystals, 90% yield) 
(Scheme 1). The X-ray crystallographic structure of C§ is 

Fig. 1 A view of the major component in the X-ray structure of 
~~U~~-[MOC~(NCHCO~M~)(P~~PCH~CH~PP~~)~] C. The hydrogen 
atom H(61) was located in the final difference map but was not 
included in the refinement process. 

$ trans-[MoC1(NCHC02Me)(Ph2PCH2CH2PPh2)2] C: lH NMR 
(CD2C12): 6 3.28 ( lH ,  quintet, NCH), 2.65-2.8 (SH, 2 x br m, 
PCH2CH2P), 3.00 (3H, s, OCH3) and 6.5-7.5 (40 H ,  m, CH2PPh); 
31P{1H} NMR (CD2C12): 6 -86.7 (s); FT IR (Nujol mull; vlcm-l): 
1607, 1622 and 1637 (strong, vCO and vCN). 
0 Crystal structure analysis of trans-[MoC1(NCHCO2Me)- 

1099.2. Monoclinic, space group C2 (No. 5), a = 21.851(3), b = 
14.054(2), c = 17.152(1) A, f~ = 101.259(9)", V =  5165.9 A3, Z = 4, D, 
= 1.413 g cm-3, F(OO0) = 2264, p(Mo-Ka) = 5.7 cm-l. h(Mo-K$ = 
0.71069 A. Dichroic green-red prism crystals with diamond cross- 
section. One, ca. 0.12 x 0.21 x 0.26 mm mounted on glass fibre; 
photographic examination; the CAD4 diffractometer (with mono- 
chromated radiation) for accurate cell dimensions (from settings of 25 
reflections, 0 ca. 10.5", each in four orientations) and measurement of 
diffraction intensities (€I,,, 23"). Corrections for Lorentz-polarisation 
effects and to eliminate (by Bayesian statistics) negative intensity 
values were made. 3767 Unique reflections entered into SHELX 
system12 for structure determination (heavy-atom method) and 
refinement (large-block-matrix least-squares methods) to R 0.060 and 
R, 0.06212 for 3411 reflections (those with I > 3/201), weighted w = 
(02 + 0.00047 P)-l. 

The trans-Cl and -N ligands and the solvent molecule are disordered 
in ca. 4 : 1 ratio in opposing directions. All non-N atoms except those 
in minor sites of the N ligand and solvent molecule were refined 
anisotropically. H atoms were included in idealised positions on the 
diphosphine ligands. Highest peaks in final difference map were ca. 
0.45 e A-3 near disordered ester groupholvent atoms. Atomic 
coordinates, bond lengths and angles, and thermal parameters have 
been deposited at the Cambridge Crystallographic Data Centre. See 
Notice to Authors, Issue No. 1. 
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Fig. 2 Canonical representations of bonding in the alkenylamide 
showing how metallo-nitrogen ylide character might account for the 
incipient carbanionic behaviour of C 

shown in Fig. 1. The C1-Mo-N-C framework is essentially 
linear and the N-C-C bond angle is 121(1)'; this, together 
with the bond length data, is consistent with Mo-N and N-C 
multiple bond character and with sp and sp2 hybridisation at 
the nitrogen and a-carbon atoms, respectively (Fig. 2). The 
Mo-N distance in C of 1.853(8) 8, is significantly shorter than 
in [Mo(q5-C5H5)(CO),{NC(But)2}] [ 1.892(5) A], which also 
has the linear Mo-N-C arrangement;s the difference in the 
N-C distances in the two molecules [1.22(2) and 1.26(1) A, 
respectively] is not statistically significant. 

The reactivity of C suggests that it has incipient carbanion 
character and it can be considered as a metallo-nitrogen ylide 
(Fig. 2). Thus, it reacts cleanly with Me1 at the a-carbon atom 
to give the cationic methyl derivative trans-[MoCl{NCH(Me)- 
C02Me} (Ph2PCH2CH2PPh2)2] + D, which was isolated as the 
iodide salt and characterised by lH, 31P{lH} and 
13C{ 1H}NMR, and FT IR spectroscopy (violet crystals, 74% 
yieldq (Scheme 1). The pK, of B is ca. 12 which places the 
a-carbon acidity between that of ethyl acetoacetate and 
diethyl malonate.9 

The imides B and D are electroactive and each undergoes a 
reversible one-electron oxidation at E1,20~ 0.64 and 0.68 V 
(CH2C12, 0.2 mol dm-3 [NBu4][BF4]), and a partially revers- 
ible reduction at E1/2red -2.12 and -2.21 V {tetrahydrofuran 
(thf), 0.2 mol dm-3 [NBu4[BF4], vs. ferrocenium-ferrocene 
(fc+-fc)} , respectively. Controlled potential electrolysis of B 
{vitreous carbon cathode, -2.3 V vs. fc+-fc, 10% MeC02H 
(vlv) in thf, 0.2 mol dm-3 [NBud][BF4]} liberated glycine 
methyl ester in 70% yield. The ester was identified by TLC 
and the yield determined spectrophotometrically by reaction 
with ninhydrin.10 Correspondingly, electrolysis of D under 
identical conditions gave alanine methyl ester in 80% yield 
(Scheme 2). 

On terminating the electrolysis of either B or D, the dark 
orange catholyte solutions slowly turned bright magenta. 
Cyclic voltammetry, TLC, 31P{ 1H)NMR and the characteris- 
tic electronic absorption at 514 nm established that the metal 
product so formed was the q2-acetate dihydride [MoH2(q2- 
MeC02)(Ph2PCH2CH2PPh2)2]+ E, first reported by Ito 
et al. 11 

The precursor to E is the known orange monohydride 
trans- [ MoH( q2-MeC02) ( Ph2PCH2CH2PPh2)2] F. This spe- 
cies is oxidised reversibility at E1/20x -1.00 V vs. fc+-fc and 
was detected in the reductive cyclic voltammetry under argon 
of either B or D in the presence of MeC02H, and as an 
intermediate that builds up during the course of the bulk 
electrolysis of either imide. It is generated by reduction or by 
deprotonation of E with base, and is also produced by the 
reaction of trans-[Mo(N2)2(Ph;?PCH2CH2PPh2)2] with 
MeC02H. 

7 trans-[MoCl{ NCH(Me)C02Me} (Ph2PCH2CH2PPh2)2]I (D iodide): 
lH NMR (CD2Cl2): 6 0.27 (3H, d,  NCHMe; see below), 2.87 (3H, 
OCH3), 2.9-3.1 (9H, br m, PCH2CHP with superimposed NCH; 
irradiation of multiplet of 3.0 causes collapse of doublet at 6 0.27 to a 
singlet) and 6.5-7.5 (40H, m, CH2PPh); 31P{ lH} NMR (CD2C12): 6 
-99.4 (m); deprotonation of D leads to a singlet at 6 -90.75; 13C{ 'H} 
NMR (CD2C12): 6 18.2 (s, NCHMe), 26.8 and 27.5 (m, PCH2), 52.8 
(s, OCH3), 70.9 [s, NCH(CH)J, 128-135 (m, PPh2) and 167.5 (s, CO); 
FT IR (Nujol mull; dcm-1): 1748 (strong, K O ) .  
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Scheme 2 Electrochemical cleavage of the Mo-N bond in the presence 
of acetic acid to release amino acid esters and form q2-acetato- 
molybdenum hydrides. Mo represents the { M O ( P ~ ~ P C H ~ C H ~ P P ~ ~ ) ~ )  
assembly. Conditions: glassy carbon electrode, - 1.8 V vs. standard 
calomel electrode, 10% v/v MeCOzH in thf containing 0.2 mol dm-3 
[NBu4][BF4]. 

That E is reduced to F at Epred -1.88 V vs. fc+-fc, a 
potential positive to that of B or D, accounts for the 
steady-state current observed during bulk electrolyses. 
Reduction of E generates F, which is slowly re-protonated 
by MeC02H, thus establishing a proton-discharge cycle 
(Scheme 2). 

In conclusion, amino acid esters can be synthesised from a 
molybdenum nitride via formation of imide and nitrogen ylide 
intermediates. It is noteworthy that the methylated product 
trans-[MoC1{NCH(Me)C02Me}(Ph2PCH2CH2PPh2)2] D also 
is deprotonated to give a nitrogen yield and this offers the 
prospect of further derivatisation at the a-carbon atom. 
Asymmetric tertiary phosphine co-ligands might allow access 
to optically active products. 

We thank Dr R. A. Henderson for estimating the pK, of B 
by stopped-flow spectrophotometry and for helpful discus- 
sion. 
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