An Unusually Extended Electron-transfer Series in Some Nickel Complexes with Innocent Homoleptic Arsine Coordination

Alison J. Downard,*a Lyall R. Hanton*b and Rowena L. Paul *^a*

^aDepartment of Chemistry, University of Canterbury, Christchurch, New Zealand b Department of Chemistry, University of Otago, Dunedin, New Zealand

Cyclic voltammetry in acetonitrile of the five-coordinate bis-triarsine complexes $[Ni(mtas)_2]^2$ + and $[Ni(ptas)_2]^2$ + [mtas = bis(2-dimethylarsinophenyl)methylarsine and ptas = bis(2-dimethylarsinophenyl)phenylarsine] reveals an extended metal-centred electron-transfer series with reversible formation of all nickel oxidation states from 0 to IV.

The higher oxidation states of nickel can be stabilised by bidentate As or P donor ligands incorporating the o -C₆H₄ backbone. The ability of these ligands to stabilise Ni^{III} and Ni^{IV} arises from their strong o-donor power, small steric requirements and their rigidity which resists dissociation from the metal.¹⁻⁵ On the other hand, Ni^I and Ni⁰ are stabilised by ligands which have strong π -acceptor properties and, when chelating, are sufficiently flexible to permit the geometrical changes which accompany the Ni¹¹ \rightarrow Ni¹ \rightarrow Ni⁰ reductions.⁶⁻⁸

Herein is described the electrochemistry of $\left[Ni(m\text{tas})_2\right]^{2+9}$ and $[Ni(\text{ptas})_2]^{2+10}$, which by cyclic voltammetry exhibit reversible formation of all oxidation states from Ni⁰ to Ni^{IV}. To our knowledge, these are the first nickel complexes to exhibit the complete metal-based electron-transfer series¹¹ and further, the Ni^{III} and Ni^{IV} complexes are the first to incorporate the homoleptic arsenic donor sets, $NiAs₅$ and $NiAs₆$, respectively.

 $\frac{1}{4}$ X-Ray structural analyses¹⁰ show that $[Ni(mtas)_2](ClO₄)$ ₂ and $[Ni(ptas)_2](BF_4)_2$ adopt distorted square-pyramidal and trigonal-bipyramidal structures, respectively. In both complexes only five sites are occupied by the two potentially tridentate ligands (Ni-As distances range from 2.28–2.47 Å), with a terminal -AsMe₂ group dangling uncoordinated at about 4 Å from the nickel. Variable-temperature H NMR studies¹⁰ indicate that, in both complexes, the dangling arsenic exchanges with some of the coordinated arsenic donors.

Table 1 Electrochemical data"

	F°				
Complex	V(0)	II/I	$\frac{1}{11}$	IV/III	Solvent
$[Ni(mtas),]^{2+}$ $[Ni(ptas)2]$ ²⁺ $[Ni(ptas)_2]^{2+}$ $[Ni(diars)(mtas)]^{2+}$ $[Ni(diars)(mtas)]^{2+}$ $[Co(mtas),]^{3+}$	-1.16 -1.10 -1.26^{b} -1.18 -1.43^{c} -1.85	-0.60 -0.50 -0.46 -0.66 -0.54 -0.61	0.89 0.89 1.02 1.02 1.16 0.04	1.21 1.19 1.24 1.38^{b}	MeCN MeCN CH ₂ Cl ₂ MeCN CH ₂ Cl ₂ MeCN
Ligand	$E_{\rm p}^{\rm ox}(1)^d$	$E_{\rm p}^{\rm ox}(2)^d$		Solvent	
mtas ptas diars	0.83 0.91 1.08	1.20 1.24		MeCN MeCN MeCN	

a Concentration 10^{-3} mol dm⁻³ complex or ligand; scan rate = 100 $mV s^{-1}$, at a glassy carbon electrode of area 0.07 cm². MeCN-0.1 mol dm⁻³ [Bu₄N]ClO₄ or CH₂Cl₂-0.1 mol dm⁻³ [Bu₄N]PF₆, potentials in
V *vs*. saturated calomel electrode (SCE) *(E^o'* Fc+/Fc = 0.3 V). ^{*b*} Scan rate = 500 mV s⁻¹. ϵ *T* = -30 °C. *d* Peak potential for irreversible two-electron oxidation.

Cyclic voltammetry in MeCN- $[Bu₄N]ClO₄$ of the fivecoordinate bis-triarsine complexes $[Ni(mtas)_2](ClO_4)_2$ and $[Ni(\text{ptas})_2](BF_4)_2$ at room temperature and scan rates less than 1 V s^{-1} shows, for each complex, a quasi-reversible oxidation step followed by a reversible oxidation, and a reversible reduction followed by a quasi-reversible reduction [Fig. $1(a)$] and Table 1]. All couples involve the transfer of one electron. \ddagger To aid interpretation of these results, the electrochemistry of the five-coordinate triarsine-diarsine complex [Ni(diars)- (mta~)](C10~)~12 [diars = **1,2-bis(dimethylarsino)benzene]** was also investigated since this complex does not contain a potential sixth **As** donor. Similar cathodic behaviour to the five-coordinate bis-triarsine complexes is observed but the second oxidation step is chemically reversible only at scan rates greater than 500 mV s^{-1} or at lower temperatures [Fig. $1(b)$ and Table 1]. In the more weakly coordinating CH_2Cl_2 - $[Bu_4N]PF_6$ medium, $[Ni(\text{ptas})_2](BF_4)_2$ exhibits a reversible one-electron reduction followed by a reduction which is chemically reversible (and electrochemically quasi-reversible) only at scan rates greater than 200 mV s^{-1} or at lower temperatures [Fig. $2(a)$]. The anodic response is complicated by weak adsorption¹³ but is qualitatively similar to that in MeCN-[Bu₄N]ClO₄. [Ni(mtas)₂]²⁺ (as the ClO₄-, BF₄- or PF_6^- salts) is only sparingly soluble in CH_2Cl_2 and could not be examined. For $[Ni(diars)(mtas)](BF_4)_2$ in CH_2Cl_2 - $[Bu_4N]PF_6$ the second reduction is chemically reversible only at temperatures below -30° C (scan rate = 100 mV s⁻¹) and only one oxidation is observed before the solvent limit [Fig. $2(b)$. §

That the electron transfer processes are not isolated on the ligands is indicated by a number of observations. First, the instability of the products of the second reduction steps for $[Ni(ptas)_2]^2$ ⁺ and $[Ni(diars)(mtas)]^2$ ⁺ in CH₂Cl₂- $[Bu_4N]PF_6$ is consistent with the generation of Ni^{0} species which react with the alkyl halide solvent.15 Second, the free ligands cannot be reduced before the solvent limit and undergo chemically irreversible two-electron oxidations (Table 1). Further, the octahedral complex $[Co(mtas)₂]$ ^{3+ 14} cannot be oxidised in $MeCN-[Bu_4N]ClO_4$ and exhibits three reversible one-elec-

Fig. 1 Cyclic voltammetry in MeCN-0.1 mol dm^{-3} [Bu₄N]ClO₄; scan rate = 100 mV s⁻¹; $T = 22$ °C; at a glassy carbon electrode (area = 0.07 cm²), of 1×10^{-3} mol dm⁻³ solutions of (a) [Ni(ptas)₂](BF₄)₂ and (b) $[Ni(diars)(mtas)](ClO₄)₂$

Fig. 2 Cyclic voltammetry in $CH_2Cl_2-0.1$ mol dm⁻³ [Bu₄N]PF₆ of *(a)* 1 \times 10⁻³ mol dm⁻³ [Ni(ptas)₂](BF₄)₂ and *(b)* 1.25 \times 10⁻³ mol dm⁻³ $[Ni(diars)(mtas)](BF₄)₂$. Other conditions as in Fig. 1.

tron reductions which can reasonably be assigned to the formation of Co^{I1}, Co¹ and Co⁰ species. Thus metal-based reductions are indicated for the nickel complexes. Considering the oxidation steps, it appears that the triarsine ligands cannot be oxidised when coordinated in a tridentate fashion and while oxidation of an uncoordinated arsine in complexes $[Ni(mtas)₂]^{2+}$ and $[Ni(ptas)₂]^{2+}$ must be considered, the observed reversible one-electron steps are not consistent with this interpretation. Finally, the electrochemistry of [Ni(diars)- $(mtas)$]²⁺ indicates significant participation of the metal centre. Six-coordination is the most likely geometry for the Ni^{IV} centre^{15,16} and for $[Ni(ptas)_2]^{2+}$ this can be achieved by coordination of the dangling arsine to make use of all six As

 $\frac{1}{4}$ For reversible couples, ΔE_p was the same as that for *in situ* ferrocene; for quasi-reversible couples, $\triangle E_{\rm p}$ was greater. Peak currents were $\approx 90\%$ of those for equimolar *in situ* ferrocene.

⁹ The reversible oxidation is followed by a small peak of variable size and potential which we attribute to adsorption of a minor decomposition product.

donor atoms. For $[Ni(diars)(mtas)]^{2+}$ with only five available As donors, MeCN or $ClO₄$ may coordinate in the MeCN- $[Bu_4N]ClO_4$ medium to stabilize the Ni^{IV} oxidation state. However, in the absence of other donors, for example in the very weakly coordinating $CH_2Cl_2-[Bu_4N]PF_6$ medium, the complex remains five-coordinate and the Ni^{IV} state becomes too unstable to be accessed.

Consideration of the E° values for successive electron transfers suggests that a change in coordination number occurs with the $Ni^T-Ni⁰$ step (five to four coordination) and with the Ni^{III}-Ni^{IV} step (five to six coordination).¶ Chemically reversible oxidation of $[Ni(diars)(mtas)]^{2+}$ in $CH_2Cl_2-[Bu_4N]PF_6$ also implies a coordination number of five for the Ni^{III} species since no increase in coordination number is possible in this medium. On the basis of electron-transfer rates relatively slow structural rearrangements are indicated at the Ni^{I-N0} and Ni^{II}-Ni^{III} steps. Details of these changes in coordination number and structure will be probed by further electrochemical and spectro-electrochemical studies. \parallel

Metal-based redox processes are now well-established for nickel complexes of phosphine and arsine ligands and are not unexpected for these complexes. However, the observation of the entire redox series from $Ni⁰$ to Ni^{1V} is unprecedented and can be attributed to the strong σ -donor and π -acceptor properties of the ligands and their 'moderate' flexibility which both stabilises the homoleptic Ni^{III} and Ni^{IV} complexes to ligand dissociation and permits the geometrical changes required in the formation of the Ni¹ and Ni⁰ complexes. In addition, the tridentate ligands with their small cone angles at As are ideally suited to the generation of the Ni^{IV} complexes by allowing the incorporation of the remaining dangling arsine

7 Stabilisation of the product for an electron transfer by a change in coordination number makes the oxidation or reduction relatively easier than when no change accompanies electron transfer.

| For the Ni^{I-}Ni⁰ step, slow charge transfer is consistent with structural change accompanying a change in coordination number. However, structural change does not necessarily lead to slow charge transfer'' and slow charge transfer need not arise from a change in coordination number⁸ hence the results for the oxidation steps are not self-contradictory.

group into the coordination sphere to give the unique $N_iA₅₆$ donor set.

We thank Dr Graham Heath (Australian National University) and Dr Jim McQuillan (Otago University) for helpful discussions and the Universities of Canterbury and Otago for financial support.

 $Received, 11th September 1991; Com 1/04730B$

References

- 1 W. Levason, *Comment3 Inorg. Chem.,* 1990, **9,** 331.
- 2 R. S. Nyholm, *J. Chem. SOC.,* 1951, 2602.
- 3 L.F. Warren and M. **A.** Bennett, *Inorg. Chem.,* 1976, **15,** 3126.
- 4 J. R. Gray, S. J. Higgins, W. Levason and M. Webster. *J: Cliem. SOC., Dalton Trans.,* 1984, 459.
- 5 S. J. Higgins, **W.** Levason, M. C. Feiters and **A.** J. Steel. *J. Cliem. SOC., Dalton Trans.,* 1986, 317.
- 6 G. Bontempelli, F. Magno, G. Schiavon and B. Corain, *[tior-g. Chem.,* 1981, 20. 2579; G. A. Bowmaker, P. D. H. Boyd. G. K. Campbell, J. M. Hope and R. L. Martin, *Inorg. Chem.*, 1982, 21, 1152.
- 7 P. Zanello, **A.** Cinquantini, C. A. Ghilardi, S. Midollini. **S.** Moneti, A. Orlandini and A. Bencini, *J. Chem. Soc.*, *Dalton Tram..* 1990, 3761.
- 8 **A.** Miedaner, R. C. Haltiwanger and D. L. Dubois, *Inorg. Chem.,* 1991, 30, 417.
- 9 R. G. Cunninghame, R. S. Nyholm and M. L. Tobe, *J. Chem. Soc. Dalton Trans.,* 1972, 229.
- 10 **M.** G. Fitzpatrick, PhD Thesis, University of Otago, 1989.
- 11 B. J. Henne and D. E. Bartak, *Inorg. Chem.,* 1984, 23, 369. The complex $Ni(bipy)_2$ shows formal oxidation states from -2 to $+3$. however, in the lower-valence complexes significant portions of the electron density resides on the ligands and the +I state is unstable with respect to disproportionation.
- 12 B. Bosnich. R. S. Nyholm, P. J. Pauling and M. L. Tobe, *J. Am. Chem. Soc.,* 1968, **90.** 4741.
- 13 **A.** J. Bard and L. R. Faulkner, *Electrochemical Methody.* Wiley, New York, 1980, p. *530.*
- 14 M. G. Fitzpatrick, L. R. Hanton, W. Levason and M. D. Spicer, *Inorg. Chim. Acta,* 1988, **142,** 17.
- 15 *Comprehensive Coordination Chemistry,* ed. *G.* Wilkinson, 1987, vol. *5.*
- 16 **A.** G. Lappin and **A.** McAuley, *Adv. Inorg. Chem.,* 1988,32,241.
- 17 W. E. Geiger, *Prog. Inorg. Chem.,* 1985, 33. 275.