Half-sandwich Niobium(iii) Nitrene (Imido) Complexes containing Carbonyl, Alkene and Acetylene Ligands

Andrew D. Poole,^a Vernon C. Gibson^{*}^a and William Clegg^b

a Department of Chemistry, University Science Laboratories, South Road, Durham DH 1 3LE, UK ^bDepartment of Chemistry, The University, Newcastle upon Tyne NEI 7RU, UK

The chiral-at-metal niobium nitrene compounds $[Nb(\eta-C_5H_5)(N-2,6-Pri_2C_6H_3)(PMe_3)(L)]$ (L = CO, C₂H₄, C₃H₆ and RC=CR) have been prepared *via* the dichloride $[Nb(n-C₅H₅)(N-2,6-Pr₂C₆H₃)C₂]$ and the molecular structure of the propene derivative has been determined.

their relevance to a number of important catalytic processes CR)] ($Ar = 2.6$ -Pr¹₂C₆H₃; X = Cl, O-2.6-Pr¹₂C₆H₃; py = including ammoxidation, amination and oxyamination.¹ For pyridine)³. Here, we report a

There is considerable interest in the chemistry of complexes the Group 5 metals, such compunations are rare, presently combining multiply bonded nitrene (or imido) ligands and being restricted to tantalum complexes of the type neutral organic molecules at a single metal centre owing to $[\text{Ta}(\text{NPh})C(\text{PMe}_3)_3(\text{RCH}=CH_2)]^2$ and $[\text{Ta}(\text{NAr})X(\text{py})_2(\text{RCE})$
their relevance to a number of important catalytic processes $CR)$ $(Ar = 2,6\text{-}Pr_2C_6H_3; X = Cl, O$ pyridine)³. Here, we report a series of imido-carbonyl, -acetylene and -aikene complexes which represent the first examples of these ligand combinations for niobium. The chemistry is summarised in Scheme 1.

The yellow ethylene and propene complexes 1 and 2^{\dagger} are prepared by treatment of $[Nb(\eta-C_5H_5)(N-2,6-Pr_2C_6H_3)Cl_2]^4$ with two equivalents of ethyl and n-propyl Grignard reagent, respectively, in the presence of PMe3. Propane is generated during the formation of **2** (by mass spec.) indicating that this reaction proceeds *via* β-hydride elimination and loss of alkane from a dialkyl intermediate. Owing to the prochiral nature of the propene ligand in **2,** four isomers may be observed, corresponding to the four possible propene binding orientatiom shown below. One of the isomers can be crystallised selectively from a saturated pentane solution at $-78 \degree C$, and a molecular structure determination \ddagger (Fig. 1) shows it to be the isomer in which the methyl substituent of the propene ligand is directed away from the PMe₃ and C_5H_5 ligands and towards the arylimido group, being accommodated in a relatively unhindered environment by a twisting of the 2,6-diisopropyl-

 $\frac{1}{4}$ *Crystal data* for C₂₃H₃₇NPNb: $M = 451.4$, monoclinic, $P2_1/m$, $a =$ 8.543(4), $b = 16.069(4)$, $c = 8.551(3)$ Å, $\beta = 94.35(4)$ °, $U = 1170.5$ \hat{A}^3 , $\hat{Z} = 2$, $D_c = 1.281$ g cm⁻³, λ (Cu-Ka) = 1.54184 Å, $\mu = 4.97$ mm⁻¹, $F(000) = 476$, $T = 180$ K. The structure was determined by Patterson and difference syntheses, with blocked-cascade leastsquares refinement on F . Intensities were measured by an on-line profile fitting method.⁶ SHELXTL⁷ and locally written computer programs were employed, and atomic scattering factors were taken from ref. 8. The weighting scheme was $w^{-1} = \sigma^2(F_0) = \sigma_c^2(F_0) + 20 +$ $53G + 5G^2 - 42H + 37H^2 - 155GH$, where $G = F_0/F_{\text{max}}$ and $H =$ $sin\theta/sin\theta_{max}$; the cofficients were derived from analysis of the data.⁹ Anisotropic thermal parameters for Nb and all non-H atoms of imido and phosphine ligands, ideal rigid pentagons for Cp with $C-C1.420 \text{ Å}$, H atoms constrained [C-H 0.96 A, H-C-H 109.5", Cp H on ring angle bisectors, $U(H) = 1.2U_{eq}(C)$, but not included for the alkene ligand. Extinction effects were insignificant. The Cp and alkene ligands are disordered, superimposing on each other across the mirror plane through Nb, N and P atoms. The final $R = 0.0660$, $\dot{R}_{\rm w} =$ $(\Sigma w \Delta^2 / \Sigma w F_0^2)^{1/2} = 0.0472$, $S = 1.05$ for 115 parameters. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

 $Ar = 2,6-Prⁱ2 C₆H₃$

Scheme 1 *Reagents and conditions*: i, EtMgCl, 2 equiv., Et₂O, 12 h, room temp.; ii, PrⁿMgCl, 2 equiv., Et₂O, 12 h, room temp.; iii, CO (g), 1 atm, n-pentane, *:5* min; iv, CO (g), 1 atm, n-pentane. 5 days; v, \widetilde{C}_2H_4 , 4 equiv., benzene, 24 h, 60 °C; vi, C_2D_4 , 4 equiv., benzene, 10 days; vii, $RC\equiv CR$ ($R = Me$, Ph), 1 equiv. benzene, room temp.; viii, CH₂CHMe, 1 equiv., benzene, room temp.

The four possible orientations of the propene ligand in 2

phenyl substituent relative to its orientation in [Nb(q- C_5H_5)(NAr)Cl₂].⁴ The metal-nitrogen distance, at 1.793(11) \AA , is at the long end of the range observed for Nb-N(imido) bond lengths,⁵ and compares with a metal-nitrogen distance of 1.761(6) $A⁴$ in the starting dichloride; the slight increase in Nb-N bond length for **2** is attributed to its lower formal metal oxidation state. The metal-carbon distances for the methylene and methine carbons are 2.39(3) and 2.28(3) A, respectively, with a C–C distance of $1.58(4)$ \AA . Caution is required in the interpretation of these bond parameters owing to disorder in the propene ligand \ddagger

However, of considerable interest is the orientation of the propene group, since in recent work4 we have noted a ciose similarity between the frontier orbitals of the $[Nb(\eta -))$ $C_5H_5(NR)$] fragment with those of bent metallocenes. Pseudo-metallocene character would require the C(21)-C(22) bond of the propene ligand to lie coplanar with the phosphine to allow favourable overiap with the metallocene-like frontier orbitals of the $[Nb(\eta-C_5H_5)(NR)]$ fragment; we find that the Nb-P bond lies only 7.1° out of the Nb-C(21)-C(22) plane which does indeed lend further support to the metallocene analogy.

The ethylene ligand of **1** is not displaced by substituted alkenes but will exchange slowly with C_2D_4 and carbon monoxide to give the deuterio-ethylene complex [2H4]- **1** and the carbonyl compound **3,** respectively. The propene deriva-

t Satisfactory elemental analyses have been obtained. *Selected spectroscopic data* for **1:** ¹H NMR (C_6D_6 , 400 MHz, 298 K): δ 5.00 (s, $5H, C_5H_5$), 0.98, 1.00 (d, 12H, $3J_{HH}$ 7.0 Hz, CHMe₂), 4.20 (sept, 2H, $^{3}J_{\text{HH}}$ 7.0 Hz, CHMe₂), 0.96 (unresolved, 9H, PMe₃), 0.58, 1.40, 1.64 (m, 4H, C₂H₄), 6.88 (t, 1H, ³J_{HH} 7.0 Hz, *p*-C₆H₃) and 7.02 (d, 2H, 17.0 **(s, PMe₃)**, 24.0 **(s, CHMe₂)**, 24.5 **(s, C₂H₄)**, 27.5 **(s, CHMe**₂). 28.2 **(5,** C2H4), 100.6 *(5.* C5H5), 121.7, 122.4, 143.5, 152.2 **(s,** Arc). For 2a: ¹H NMR (C₆D₆, 400 MHz, 298 K): δ 5.48 (d, 5H, ³J_{PH} 1.2 Hz, $\rm C_5H_5)$, 1.16, 1.22 (d, 12H, $^3J_{\rm HH}$ 7.2 Hz, CHMe₂), 3.51 (sept, 2H, $^3J_{\rm HH}$ 7.2 Hz, CHMe₂), 0.96 (d, 9H, ²J_{PH} 7.2 Hz, PMe₃), 1.53 (d, 3H, ³J_{HH} 6.4 Hz, CH₂CHMe) and 6.90–7.01 (m, 3H, C₆H₃). For 2b: ¹H NMR (d, 12H, $3J_{\rm HH}$ 6.8 Hz, CHMe₂), 3.68 (sept, 2H, $3J_{\rm HH}$ 6.8 Hz, CHMe₂), 0.90 (d, 9H, ²J_{PH} 7.2 Hz, PMe₃), 2.02 (d, 3H, ³J_{HH} 6.4 Hz, CH₂CHMe) and 6.90–7.01 (m, 3H, C₆H₃). For **2c**: ¹H NMR (C₆D₆, 12H, $\mu_{\rm H}$ 6.8 Hz, CHMe₂), 3.90 (sept, 2H, $\mu_{\rm H}$ 6.8 Hz, CHMe₂), 0.95 (d, 9H, ²J_{PH} 7.2 Hz, PMe₃), 2.24 (d, 3H, ³J_{HH} 6.4 Hz, CH_2CHMe) and 6.90–7.01 (m, 3H, C_6H_3). For 2d: ¹H NMR (C_6D_6 , 12H, ³J_{HH} 6.8 Hz, CHMe₂), 4.02 (sept, 2H, ³J_{HH} 6.8 Hz, CHMe₂), 1.01 (d, 9H, ²J_{PH} 7.2 Hz, PMe₃), 2.06 (d, 3H, ³J_{HH} 6.4 Hz, CH_2CHMe) and 6.90–7.01 (m, 3H, C_6H_3), the methine and methylene signals of the propene ligand are unresolved and partially obscured. For 3: ¹H NMR (C₆D₆, 400 MHz, 298 K): δ 5.22 (s, 5H, CSH5), 1.32 (d, 12H. *3JHkl* 6.8 Hz, CHMe?), 4.06 (sept. 2H, *'JHH* 6.8 $^{3}J_{\text{HH}}$ 7.0 Hz, m-C₆H₃); ¹³C{¹H} NMR (C₆D₆, 100.6 MHz, 298 K): δ $(C_6D_6, 400 \text{ MHz}, 298 \text{ K})$: δ 5.43 (d, 5H, $^{3}J_{\text{PH}}$ 1.2 Hz, C_5H_5), 1.20, 1.26 400 MHz, 298 K): *b* 5.40 (d, 5H, 'JpH 1.2 Hz, CsHS), 1.17, 1.23 (d, 400 MHz, 298 K): δ 5.35 (d, 5H, ³J_{PH} 1.2 Hz, C₅H₅), 1.23, 1.29 (d, Hz, CHMe₂), 0.85 (d, 9H, ²J_{PH} 7.2 Hz, PMe₃), 7.01 (t, 1H, ³J_{HH} 7.2
Hz, *o-*C₆H₃) and 7.11 (d, 2H, ^{3J}HH 7.2 Hz, *m-*C₆H₃); ¹³C NMR (C₆D₆, 100.6 MHz, 298 K): δ 20.6 (s, PMe₃), 23.6 (s, CHMe₂), 28.1 (s, CHMe?), 95.6 **(s,** C5H5), 122.0, 122.4, 141.5, 152.2 **(5,** Arc); IR (Nujol, Cd. cm **-1):** 1870 [v(CO)J.

Fig. 1 Crystal structure of one of the isomers of complex **2**

tive **2** is carbonylated more rapidly, and also reacts with ethylene at 60 *"C* in benzene to give **1.** This is attributed to the greater lability of the monosubstituted alkene of **2** compared with the ethylene ligand in **1.** For the same reason, **2** is also less stable than **1,** decomposing *viu* loss of alkene at room temperature to give black hydrocarbon-soluble paramagnetic products which, to date, have not been identified. Disubsti-

BP Chemicals and the SERC are gratefully acknowledged for financial support. **V.** C. G. is the recipient of a BP Chemicals Young University Lecturer Award.

Received, 14th October 1991; Corn. 1/O5214D

References

- 1 See for example. J. D. Burrington and R. K. Grasselli, *J. Catal,* 1979, **59,** 79: R. K. Grasselli and J. D. Burrington, *Adv. Catal.,* 1981, **30.** 133; K. B. Sharpless, D. W. Patrick. L. K. Truesdale and S. A. Biller, *J. Am. Chem. Soc.*, 1975, 97, 2305; S. G. Hentges and K. B. Sharpless. *J. Org. Chenz.,* 1980, **45,** 22.57.
- 2 S. M. Rocklage and R. R. Schrock, *J. Am. Chern. Soc.,* 1980.102, 7809.
- 3 Y-W. Chao, P. A. Wexler and D. E. Wigley, *Inorg. Chem.,* 19x9, 28, 3860.
- 4 D. N. Williams, J. P. Mitchell, **A. I>.** Poole. U. Siemeling, W. Clegg, D. C. R. Hockless, P. A. O'Neil andV. C. Gibson,J. *Chem. SOC., Dalton Trans.,* in the press.
- *5* F. A. Cotton, **S. A.** Duraj and W. J. Roth, *J. Am. Chem.* Soc., 1984. **106,** 4749; P. **A.** Finn, M. **S.** King, P. A. Kitty and K. E. McCarley, *J. Am. Chem. Soc.,* **1975, 97,** 220; L. **S.** Tan, G. **V.** Goeden and B. L. Haymore, *Inorg. Chem.,* 1983, **22,** 1744.
- 6 W. Clegg, *Acta Crystullogr., Sect. A,* 1981, **37,** 22.
- 7 G. M. Sheldrick, SHELXTL, an integrated system for solving, refining and displaying crystal structures from diffraction data. Revision *5.* University of Gottingen, Germany, 1985: SHELXS86, 1986.
- 8 *International Tables for X-Ray Crystallogruphy,* Kynoch Press, Birmingham, 1974, vol. IV, pp. 99, 149.
- 9 Wang Hong and B. E. Robertson, *Structure and Stutistics in Crystallography,* ed. **A.** J. C. Wilson, Adenine Press. New York, 1985, p. 125.