## Absorption and Emission of Germylenes (Germanediyls); Their Complexation

Kunio Mochida,\* <sup>a</sup> Satoshi Tokura<sup>a</sup> and Shigeo Murata<sup>b</sup>

<sup>a</sup> Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Tokyo 171, Japan <sup>b</sup> National Chemical Laboratory for Industry, Tsukuba, Ibaraki 305, Japan

Germylenes, R<sub>2</sub>Ge: (R = Me or Ph), show broad electronic absorption bands with  $\lambda_{max}$  in the region of 416–464 nm, weak fluorescence peaks in the region of 620–651 nm at 77 K, and a large Stokes shift, attributed to a conformational change in the C–Ge–C bond angle between the ground and the lowest excited singlet states; UV–VIS spectra provide evidence for the interaction of dimethylgermylene with the  $\pi$ -system of arylated germanium precursors.

The spectroscopic characterization of germylenes, analogues of carbenes and silylenes, has been the subject of considerable interest in recent years.<sup>1</sup> We herein describe the first report of the fluorescence spectra of the simple diorganogermylenes,  $R_2Ge: (R = Me \text{ or } Ph)$ , in 3-methylpentane (3-MP) at 77 K, and spectroscopic evidence for dimethylgermylene complex formation with the  $\pi$ -system of arylated germanium precursors.

The known precursors of simple germylenes (permethylated polygermanes<sup>2,3</sup> and arylated germanium compounds<sup>4,5</sup>) were photolysed with a 110 W low-pressure Hg arc lamp (spiral type) in 3-MP at 77 K to give the corresponding germylenes. The photogenerated germylene residue appeared as a polymer, and was trapped with appropriate agents (2,3-dimethylbuta-1,3-diene and CCl<sub>4</sub>) to give the expected products [1,1,3,4-tetramethyl-1-germacyclopent-3-ene<sup>4</sup> and trichloromethyldimethylchlorogermane, (CCl<sub>3</sub>Me<sub>2</sub>GeCl), respectively].<sup>6,7</sup>

In 3-MP at 77 K diorganogermylenes showed absorption bands with  $\lambda_{max}$  in the range 416–436 nm for Me<sub>2</sub>Ge:, at 456 nm for PhMeGe:, and at 462 nm for Ph<sub>2</sub>Ge:; and weak fluorescence peaks around 620–630 nm for Me<sub>2</sub>Ge:, at 645 nm for PhMeGe:, and at 651 nm for Ph<sub>2</sub>Ge:. The UV–VIS absorption and fluorescence spectra of Me<sub>2</sub>Ge:, generated by the photolysis of Me[Me<sub>2</sub>Ge]<sub>5</sub>Me, in 3-MP at 77 K shown in Fig. 1 are typical. The UV–VIS absorptions due to R<sub>2</sub>Ge: were not observed when the matrix was warmed to its softening point. The fluorescence excitation spectra of R<sub>2</sub>Ge: followed the shape of the absorption bands. The absorption and emission data of diorganogermylenes (R<sub>2</sub>Ge:) observed in this study are summarized in Table 1, together with results reported by other groups.<sup>7–9</sup>

The absorption bands in the region of 416–462 nm for  $R_2Ge$ : observed in this study are due to the  $S_1$ – $S_0$  transition. Emissions with peaks in the 620–651 nm region were observed in 3-MP at 77 K. The fluorescence excitation spectra coincided with the absorption spectra of germylenes. There is a good mirror-image relationship between the absorption and emission spectra with a Stokes shift of 6285–7909 cm<sup>-1</sup>. We therefore conclude that the emission of germylenes in the region of 620–651 nm corresponds to the  $S_1$ – $S_0$  radiative transition. The 0–0 transition energies for the germylenes are estimated to be 197–215 kJ mol<sup>-1</sup> from the positions of the absorption and emission peaks. The singlet excited state ( $S_1$ ) and triplet ground state ( $T_0$ ) of Me<sub>2</sub>Ge: are theoretically predicted to lie 213 and 57 kJ mol<sup>-1</sup> above the  $S_0$  ground state, respectively.<sup>10</sup> The huge Stokes shift of 6285–7909 cm<sup>-1</sup> for the germylenes is attributed to a change in the C–Ge–C bond angle between the lowest excited singlet state and the ground state and confirms theoretical expectation.<sup>10</sup> The change of the C–Ce–C bond angle for the germylenes increases in the order: Ph<sub>2</sub>Ge: <PhMeGe: < Me<sub>2</sub>Ge:. 3-MP solutions of R<sub>2</sub>Ge: (R = Ph or Me) show no EPR signal, supporting a singlet ground state for R<sub>2</sub>Ge:.

A careful examination of the UV data for R<sub>2</sub>Ge: (Table 1) shows that the absorption bands ( $\lambda_{max}$ ) of Me<sub>2</sub>Ge: generated from permethylated polygermanes {[Me<sub>2</sub>Ge]<sub>6</sub> (dodecamethylcyclohexagermane) and Me[Me<sub>2</sub>Ge]<sub>5</sub>Me} are blue-shifted compared with those of Me<sub>2</sub>Ge: obtained from  $\pi$ -system-substituted organogermanium compounds.<sup>7–9</sup> The observed blue shifts for Me<sub>2</sub>Ge: are probably due to the



Fig. 1 Absorption, fluorescence and excitation spectra of dimethylgermylene obtained from  $Me[Me_2Ge]_5Me$  by UV irradiation in 3-MP at 77 K

Table 1 Absorption and emission spectral data of germylenes in 3-MP at 77 K

|                         |                                                       | λ/nm         |        |      |                  |                |
|-------------------------|-------------------------------------------------------|--------------|--------|------|------------------|----------------|
| R <sub>2</sub> Ge:      | Precursor                                             | Abs.         | Fluor. | Exc. | cm <sup>-1</sup> | Remarks        |
| Me <sub>2</sub> Ge:     | [Me <sub>2</sub> Ge] <sub>6</sub>                     | 430          | 630    | 430  | 7382             | This work      |
| Me <sub>2</sub> Ge:     | Me[Me <sub>2</sub> Ge] <sub>5</sub> Me                | 436          | 628    | 440  | 7012             | This work      |
| Me <sub>2</sub> Ge:     | (PhMe <sub>2</sub> Ge) <sub>2</sub> GeMe <sub>2</sub> | 422          | 623    | 445  | 7645             | This work      |
| Me <sub>2</sub> Ge:     | Me <sub>2</sub> Ge(SePh) <sub>2</sub>                 | 420          |        |      |                  | 7              |
| Me <sub>2</sub> Ge:     | Trigermacyclo-<br>heptadiene                          | 420          |        |      |                  | 8              |
| Me <sub>2</sub> Ge:     | 7-Germanorborna-<br>diene                             | ${416}{420}$ | 620    | 445  | 7909             | This work<br>9 |
| PhMeGe:                 | (Me <sub>3</sub> Ge) <sub>2</sub> GePhMe              | 456          | 645    | 455  | 6426             | This work      |
| <br>Ph <sub>2</sub> Ge: | $(Me_3Ge)_2GePh_2$                                    | 462          | 651    | 463  | 6285             | This work      |

interaction of the vacant orbital of Me<sub>2</sub>Ge: with the  $\pi$  system of the arylated germanium compound precursors. The electronic environment of Me<sub>2</sub>Ge: appears to affect the nature of its interaction with the donor molecule. Thus, the degree of dimethylgermylene complex formation with donor molecules depends upon the strength of their  $\pi$ -donor properties. The fluorescence excitation spectra of Me<sub>2</sub>Ge: obtained from permethylated polygermanes perfectly followed the shape of the absorption bands of Me<sub>2</sub>Ge:, whereas the spectra for Me<sub>2</sub>Ge: obtained from arylated germanium compounds were red-shifted. The shift between the excited spectra and absorption spectra also supports the interaction of Me<sub>2</sub>Ge: with the  $\pi$ -system.

To confirm the stability of dimethylgermylene complex formation with  $\pi$ -systems, we irradiated Me[Me<sub>2</sub>Ge]<sub>5</sub>Me and [Me<sub>2</sub>Ge]<sub>6</sub> in a matrix [3-MP-isopentane (IP), 4:1] containing benzene or naphthalene. The absorption band at 436 nm due to free Me<sub>2</sub>Ge: was gradually blue-shifted (from 436 to 423 nm) with increasing concentration of benzene (molar ratio of benzene to Me[Me<sub>2</sub>Ge]<sub>5</sub>Me = 0–10:1) in the matrix. Similar phenomena were also observed in the absorption band of Me<sub>2</sub>Ge: (from 435.5 to 422.5 nm) obtained from Me[Me<sub>2</sub>Ge]<sub>5</sub>Me in a matrix containing naphthalene (molar ratio of naphthalene to Me[Me<sub>2</sub>Ge]<sub>5</sub>Me 0–2:1) and in the reaction of [Me<sub>2</sub>Ge]<sub>6</sub> with benzene or naphthalene.

Although the spectroscopic characterization of diarylgermylene complexes with heteroatom-containing substrates has been reported by Satgé and coworkers,<sup>11</sup> and Ando and coworkers,<sup>1b</sup> the present report provides the first examples of the formation of dimethylgermylene complexes with the  $\pi$ -system of the germylene precursors. This work was supported in part by the Ministry of Education, Science, and Culture (Grant-in-Aid for Scientific Research No. 03215228).

Received, 9th August 1991; Com. 1/04163K

## References

- (a) P. Riviere, M. R-Baudet and J. Satgé, in *Comprehensive* Organometallic Chemistry, ed. G. Wilkinson, F. G. A. Stone and E. W. Abel, vol. 2, Pergamon, New York, 1982, ch. 10, pp 478–490; (b) W. Ando, H. Itho and T. Tsumuraya, Organometallics, 1989, 8, 2759, and references cited therein.
- 2 K.Mochida, H. Chiba and M. Okano, Chem. Lett., 1991, 109.
- 3 K. Mochida, N. Kanno, R. Kato, M. Kotani, S. Yamauchi, M.
- Wakasa and H. Hayashi, J. Organomet. Chem., in the press.
- 4 M. Schriewer and W. P. Neumann, J. Am. Chem. Soc., 1983, 105, 897.
- 5 K. Mochida, I. Yoneda and M. Wakasa, J. Organomet. Chem., 1990, **399**, 53; M. Wakasa, I. Yoneda and K. Mochida, J. Organomet. Chem., 1989, **366**, C5.
- 6 W. P. Neumann and M. Schriewer, Tetrahedron Lett., 1980, 3273.
- 7 S. Tomoda, M. Shimoda, Y. Takeuchi, Y. Kaji, K. Obi, I. Tanaka and K. Honda, J. Chem. Soc., Chem. Commun., 1988, 910.
- 8 H. Sakurai, K. Sakamoto and M. Kira, Chem. Lett., 1987, 1379.
- 9 W. Ando, T. Tsumuraya and A. Sekiguchi, *Chem. Lett.*, 1987, 317.
- 10 J.-C. Barthelat, B. S. Poch, G. Tringuir and J. Satgé, J. Am. Chem. Soc., 1980, 102, 4080.
- 11 P. Riviere, A. Castel and J. Satgé, J. Organomet. Chem., 1982, 232, 123.