Synthesis of the Molecular Sieve AlPO₄-5 with an Unequal Molar Ratio of Al₂O₃ to P_2O_5

Jinxiang Dong,* Jianquan Li, a Guanghuan Liu, a Feng Wu, b Jiaoke Chang a and (the late) Wenyang Xu a

^a Research Institute of Special Chemicals, Taiyuan Unviersity of Technology, Taiyuan 030024, Shanxi, P.R. China ^b Department of Chemical Engineering, Beijing Institute of Technology, Beijing, P.R. China

The aluminophosphate molecular sieve AIPO₄-5 in which the molar ratio of Al₂O₃ to P_2O_5 is in the range from 1.43 : 1 to 2.21 : 1 has been synthesized and characterized by X-ray powder diffraction and ³¹P and ²⁷Al solid-state magic angle spinning NMR spectroscopy.

The aluminophosphate molecular sieve AlPO₄-5 is a member of the AlPO₄-*n* family,¹ and can be prepared by hydrothermal and non-aqueous methods² in the presence of an amine. it is also obtained from a synthesis medium containing F⁻ anions.³ It is a porous material with the framework oxide composition being free of silicon. After thermal decomposition of the template, the three-dimensional molecular sieve has the general composition Al₂O₃·1.0 \pm 0.2P₂O₅.⁴ It is a type of absorbent or catalyst carrier which has potential practical utility. We now report that the molecular sieve AlPO₄-5 with molar ratios of Al₂O₃ to P₂O₅ in the range 1.43:1 to 2.21:1 may be prepared from the system HF-Al₂O₃-P₂O₅-Et₃N-Prⁿ₃N.

In our experiments, stoichiometric amounts of active Al_2O_3 , H_2O , 42% aqueous HF and 85% aqueous H_3PO_4 were mixed and stirred to homogeneity. Et₃N and Prⁿ₃N were then added, and the mixture was stirred for about 10 min. The mixture was heated in an autoclave lined with Teflon at 453 \pm 2 K for 38 h. After crystallization, the samples were washed with distilled water, dried at 378 \pm 2 K, and characterized by X-ray powder diffraction (Rigaku 2034), ³¹P MAS NMR (Bruker 400), ²⁷Al MAS NMR (Varian XL-200), probe reaction of *o*-xylene isomerization and chemical analysis. The samples used to determine the chemical composition were

dipped in acetylacetone (38% solution in ethanol) for about 5 h for dealumination of the extra-framework aluminium.⁵

Fig. 1(*a*) shows the XRD pattern of the sample in Run 2. The locations and intensities of the peaks in the pattern are similar to those previously reported for AlPO₄-5,¹ except for the relative intensities of the peaks at $2\theta = 20.91$ and 26.09° .

Fig. 1 X-Ray powder diffraction (XRD) patterns of AlPO₄-5 samples: $Al_2O_3/P_2O_5 = (a) \ 1.96$; (b) 0.98

Table 1 Preparation of AlPO₄-5 samples

	Molar proportions of reactants								
Run	HF	Al ₂ O ₃	P_2O_5	Et ₃ N	Pr ⁿ ₃ N	H ₂ O	Phase	F^- : Al_2O_3 : P_2O_5	
1	3.0	2.3	1	2.4	0.32	50	AlPO ₄ -5	0.91:2.21:1.0	
2	2.3	2.1	1	2.3	0.27	50	AlPO ₄ -5	0.67:1.96:1.0	
3	2.0	1.9	1	2.2	0.27	50	AlPO ₄ -5	0.38:1.80:1.0	
4	1.0	1.5	1	1.5	0.20	50	AlPO ₄ -5	0.30:1.43:1.0	
5		1.9	1	2.2	0.27	50	AlPO ₄ -5		
							+MCM-2		
							$+A^{a}$		

 a A = amorphous.

Fig. 2 ²⁷Al MAS NMR spectrum of AlPO₄-5 samples: $Al_2O_3/P_2O_5 = (a) 1.96$; (b) 0.98 [δ values in ppm from external Al(H₂O)₆³⁺ in aqueous Al(NO₃)₃]

Table 1 shows molar ratios of Al_2O_3 to P_2O_5 in the products in the range 1.43–2.21 : 1; the ratios of F^- to $(Al_2O_3 - 1)$ are not regular. If HF is not used in the synthesis, the product is a mixture of MCM-2, AlPO₄-5 and amorphous material (see Run 5). Therefore, a molecular sieve AlPO₄-5 with unequal molar ratios of Al₂O₃ to P₂O₅ can be synthesized. The presence of HF is necessary for a uniform phase to be obtained.

The sample with Al₂O₃/P₂O₅ = 1.96 was characterized by ²⁷Al and ³¹P MAS NMR spectroscopy and isomerization of *o*-xylene. Fig. 2(*a*) shows the ²⁷Al MAS NMR spectrum, which includes a peak at δ 36.3, but no peak at δ 0. This shows the absence of octahedral aluminium. The sample of AlPO₄-5 with Al₂O₃/P₂O₅ = 0.98 gives a similar spectrum [Fig. 2(*b*)]. The ³¹P MAS NMR spectrum (Fig. 3) shows two peaks, at δ -28.5 and -17.2. According to ret. 6, AlPO₄-5 shows a

Fig. 3 ³¹P MAS NMR spectrum of AlPO₄-5 sample with Al₂O₃/P₂O₅ = 1.96 (δ values in ppm from external 85% aqueous H₃PO₄)

peak at δ (³¹P) –28.6, consistent with tetrahedral phosphorus, and similar to our results. However, the reported spectrum⁶ does not show the peak at δ –17.2 which we observe for the sample with Al₂O₃/P₂O₅ = 11.96, providing evidence for the presence in our sample of two types of phosphorus atoms in different chemical environments. The ³¹P and ²⁷Al MAS NMR and chemical analysis results are therefore consistent with the presence of the extra aluminium in the framework.

The sample with $Al_2O_3/P_2O_5 = 1.96$ and 0.98 were calcined at 773 K for 5 h; at 673 K the isomerization of *o*-xylene took place to the extent of 4.6% on the former, but did not take place on the latter, showing the presence of a limited number of Brønsted acid sites in the sample with $Al_2O_3/P_2O_5 = 1.96$.

We thank Liyun Li, Hanzhen Yuan and Dr Dong-hui Wu (Wuhan Institute of Physics, Academia Sinica) for ²⁷Al and ³¹P MAS NMR spectra.

Received, 19th June 1991; Com. 1/03035C

References

- 1 S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan and E. M. Flanigen, US Pat., 4,310,440 (1982).
- 2 Huo Qisheng and Xu Ruren, J. Chem. Soc., Chem. Commun., 1990, 783.
- 3 Shilun Qiu, Wenqin Pang, H. Kessler and J. L. Guth, Zeolites, 1989, 4, 440.
- 4 S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan and E. M. Flanigen, *ACS Symp. Ser.*, 1983, **218**, 79.
- 5 J. Klinowski, C. A. Fyfe and G. C. Gobbi, J. Chem. Soc., Faraday Trans. 1, 1985, 81, 3003.
- 6 C. S. Blackwell and R. L. Patton, J. Phys. Chem., 1985, 88, 6135.