Chemical Communications

Number 4
1992

Novel Synthesis of a Chiral Cyclic Dienediyne System Related to the Neocarzinostatin Chromophore

Kazuhiko Nakatani, Katsuko Arai and Shiro Terashima*
Sagami Chemical Research Center, Nishi-Ohnuma, Sagamihara, Kanagawa 229, Japan

By successive treatment with lithium bistrimethylsilylamide and boron trifluoride-diethyl ether in tetrahydrofuran at $-78^{\circ} \mathrm{C}$ optically active (Z)-dienediyne epoxide 20 prepared from o-xylose and (Z)-enol triflate $\mathbf{1 6}$ is found to undergo smooth cyclization to afford the title compound.

Neocarzinostatin chromophore 1 (NCS-Chr), 1,2 the active component of the antitumour antibiotic neocarzinostatin (NCS), ${ }^{3}$ is a structurally novel DNA cleaving agent, and has attracted much attention recently because of its biological properties ${ }^{4}$ and its interesting bicyclo[7.3.0]dodecadienediyne system. ${ }^{5}$ Since it was discovered that 1 is extremely unstable upon separation from the peptide residue of NCS (apo-NCS), the synthesis of more stable analogues retaining the functions of 1 has become a challenging problem. While several groups have reported synthetic schemes directed towards cyclic analogues of $\mathbf{1 , 6}$ Wender's procedure ingeniously employing a cyclization-dehydration sequence ${ }^{6 a}$ has only been employed for final installation of the dienediyne system. ${ }^{7}$

From the viewpoint of the synthesis of various analogues of 1 and of 1 itself, a synthetic scheme featuring formation of the dienediyne system prior to ring construction was expected to be a candidate. In our previous report, ${ }^{8}$ we demonstrated the synthesis of acyclic analogues of 1 with stereo-defined (E) - and (Z)-dienediyne systems. ${ }^{9}$ We now report the first synthesis of the optically active 10 -membered dienediyne compounds 2 and $\mathbf{3}$ from the (Z)-dienediyne epoxide 20 by a novel synthetic strategy. An attempt to obtain the corresponding 9 -membered carbocyclic analogue is also reported.

The key epoxide 20 was expected to be produced by Pd-catalysed coupling of the (Z)-enol triflate $\mathbf{1 6}^{8 a}$ and the acetylene 15 followed by epoxide formation and desilylation. Compound 13 bearing the required functional groups with correct stereochemistry ${ }^{10}$ could be derived from D-xylose in optically active form. Thus, according to the literature, ${ }^{11}$ D-xylose was converted to $1,2-O$-isopropylidene- α-xylofuranose 4, the primary alcohol of which was protected as its pivaloate to give alcohol 5 . Swern oxidation of 5 followed by

1, NCS-Chr

2; $R=H$
addition of lithium trimethylsilylacetylide and desilylation with tetrabutylammonium fluoride (TBAF) cleanly afforded the highly crystalline acetylene 8 . The resulting tertiary alcohol of $\mathbf{8}$ was protected as its methyl ether to give the

Scheme 1 Reagents and conditions: a, acetone, cat. $\mathrm{H}_{2} \mathrm{SO}_{4}$; b , $\mathrm{Bu}^{\mathrm{t}} \mathrm{COCl}$, pyridine, room temp., 74% (2 steps); c, $(\mathrm{COCl})_{2}, \mathrm{Me}_{2} \mathrm{SO}$, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C} ; \mathrm{d}, \mathrm{LiC} \equiv \mathrm{CSiMe}_{3}, \mathrm{THF},-78^{\circ} \mathrm{C}$; e, TBAF, THF, $0^{\circ} \mathrm{C}, 72 \%$; (3 steps); f, MeI, $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, sealed tube, $75^{\circ} \mathrm{C}, 77 \% ; \mathrm{g}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}-\mathrm{H}_{2} \mathrm{O}(5: 1)$, room temp., $88 \% ; \mathrm{h}, \mathrm{Bu}^{\mathrm{t}} \mathrm{Me}_{2}{ }^{-}$ $\mathrm{SiO}_{3} \mathrm{SCF}_{3}, 2,6$-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 11$ (62%), (11%); i, NaBH_{4}, THF $-\mathrm{H}_{2} \mathrm{O}$ (1:1), room temp.; j, $\mathrm{NaOMe}, \mathrm{MeOH}$, room temp., 82% (2 steps); k , acetone, CuSO_{4}, room temp.; I, TBAF, THF, room temp., 63\% (2 steps)

16

17; $R^{1}=R^{2}=H$
18; $R^{1}=T s, R^{2}=H$
19; $R^{1}=R^{2}=T_{s}$

20
2; $R=H$
3; $R=A c$

$\mathrm{Ts}=p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}$

Scheme 2 Reagents and conditions: m, see text; $\mathrm{n}, \mathrm{TsCl}, 4$-dimethylaminopyridine (DMAP), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 18(55 \%), 19(10 \%)$; о, TBAF, THF, room temp., $84 \% ; \mathrm{p}, \mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}, \mathrm{THF},-78^{\circ} \mathrm{C}$, then $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O} ; \mathrm{q}, \mathrm{Ac}_{2} \mathrm{O}$, pyridine, DMAP
acetylene 9, which was subsequently hydrolysed to the hemiacetal 10. Treatment of 10 with tert-butyldimethylsilyl triflate gave rise to a mixture of two ethers, which upon separation provided the α - and β-glycosides 11 and $\mathbf{1 2}$. The minor β-glycoside $\mathbf{1 2}$ could be recycled to $\mathbf{1 0}$ by desilylation with TBAF. Reduction of the desired α-glycoside 11 with sodium borohydride followed by deprotection of the pivaloate gave a mixture of triols $\mathbf{1 3}$ and $\mathbf{1 4}$ (ca. $4: 1$), t which were converted to acetylene $\mathbf{1 5}$ by sequential acetonide formation and desilylation (Scheme 1).

Next we focused on the coupling of 15 with the (Z)-enol triflate 16 and subsequent epoxide formation (Scheme 2). The coupling reaction of $\mathbf{1 5}$ and $\mathbf{1 6}$ was attempted in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(20 \mathrm{~mol} \%), \mathrm{CuI}(50 \mathrm{~mol} \%) \ddagger$ and diethylamine (2 equiv.) in dimethylformamide (DMF) to give the (Z)-dienediyne diol 17 in 81% yield. Subsequent conversion of $\mathbf{1 7}$ to the (Z)-dienediyne epoxide 20 was accomplished in two steps. Thus, 17 was treated with an excess of tosyl chloride and 4-dimethylaminopyridine (DMAP) to afford a mixture of monotosylate 18 and ditosylate 19 with recovery of 17.

[^0]

21; $\mathrm{R}=\mathrm{Bu}^{\mathrm{t}} \mathrm{CO}$
23; $R=H$
24; $R=T s$

25
Scheme 3 Reagents and conditions: r, NaOMe, MeOH, room temp., $89 \% ; \mathrm{s}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CuI}, \mathrm{Et}_{2} \mathrm{NH}, \mathrm{DMF}, 75 \% ; \mathrm{t}, \mathrm{TsCl}$, pyridine, 94%; u, TBAF, THF, 61%

Subsequent desilylation of 18 separated from 19 and 17 with TBAF promoted epoxide formation to produce epoxide $\mathbf{2 0}$.§ With the key epoxide 20 in hand, cyclization to the cyclic dienediyne system was next examined. Treatment of $\mathbf{2 0}$ with lithium bistrimethylsilylamide in tetrahydrofuran (THF) at -78 to $0^{\circ} \mathrm{C}$ resulted in complete recovery of the starting material 20. However, upon addition of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}^{12}$ after base treatment at $-78^{\circ} \mathrm{C}$, a single product immediately appeared on TLC analysis. After usual work-up and silica gel column chromatography, compound $\mathbf{2}$ exhibiting a molecular ion mass spectral peak at $m / z 314$ could be obtained. Since the separation of the signals in the $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2 measured in $\mathrm{C}_{6} \mathrm{D}_{6}$ was not sufficient for structure elucidation, $\mathbf{2}$ was acetylated to give the monoacetate $\mathbf{3}[\mathrm{m} / \mathrm{z} 356$ $\left.\left(\mathrm{M}^{+}\right)\right]$. Decoupling and 2D NMR experiments firmly established the structure of $\mathbf{3}$ as a cyclic dienediyne from the

[^1]observation of the long-range couplings between $6 \alpha-\mathrm{H}$ and $9-\mathrm{H}$ and $9-\mathrm{H}$ and $13-\mathrm{H}$. While the preparation of stable 10 -membered cyclic dienediynes had been reported by Hirama et al., ${ }^{6 c, d} \mathbf{2}$ and $\mathbf{3}$ were found to be extremely labile on concentration and could be handled only in solution.

With the successful synthesis of $\mathbf{2}$ and $\mathbf{3}$, we next looked at preparation of the corresponding nine-membered cyclic analogue of $\mathbf{1}$ by employing the same epoxide opening strategy. The requisite (Z)-dienediyne epoxide 25 could be synthesized similarly to 20 (Scheme 3). Thus, diol 22 prepared from pivaloate $21^{8 a}$ was coupled with (Z)-enol triflate 16 under the same conditions as employed for the preparation of 17 to afford diol 23. Sequential tosylation of 23 and desilylative epoxide formation of the resulting tosylate $\mathbf{2 4}$ gave 25 . It was found, however, that $\mathbf{2 5}$ did not react in the same way as $\mathbf{2 0}$. It is well known that epoxide opening involves $\mathrm{S}_{\mathrm{N}} 2$ attack of the nucleophile colinear with the carbon-oxygen bond which is cleaved. ${ }^{13}$ Studies using molecular models suggested that such alignment could be easily adopted in the case of 18, but significant bending of the acetylenic bonds of $\mathbf{2 5}$ would be required for the backside attack of acetylide anion.
We have thus succeeded in the synthesis of $\mathbf{2}$ and $\mathbf{3}$, the first examples of chiral cyclic dienediynes, by employing a novel dienediyne formation-cyclization strategy. The synthetic scheme explored might facilitate access to various types of cyclic compounds related to 1 .

Received, 8th October 1991; Com. 1/05112A

References

1 M. A. Napier, B. Holmquist, D. J. Strydom and I. H. Goldberg, Biochem. Biophys. Res. Commun., 1979, 89, 635.

2 Y. Koide, F. Ishii, K. Hasuda, Y. Koyama, K. Edo, S. Katamine, F. Kitame and N. Ishida, J. Antibiot., 1980, 33, 342

3 N. Ishida, K. Miyazaki, K. Kumagai and M. Rikimaru, J. Antibiot., 1965, 18, 68.

4 L. S. Kappen and I. H. Goldberg, Nucleic Acids Res., 1985, 13, 1637.

5 K. Edo, M. Mizugaki, Y. Koide, H. Seto, K. Furihata, N. Otake and N. Ishida, Tetrahedron Lett., 1985, 26, 331.
6 (a) P. A. Wender, M. Haramata, D. Jeffrey, C. Mukai and J. Suffert, Tetrahedron Lett., 1988, 29, 909; (b) P. A. Wender, J. A. McKinney and C. Mukai, J. Am. Chem. Soc., 1990, 112, 5369; (c) M. Hirama, K. Fujiwara, K. Shigematsu and Y. Fukazawa, J. Am. Chem. Soc., 1989, 111, 4120; (d) K. Fujiwara, A. Kurisaki and M. Hirama, Tetrahedron Lett., 1990, 31, 4329; (e) T. Doi and T. Takahashi, J. Org. Chem., 1991, 56, 3465.
7 Other cyclic relatives; (a) T. Wehlage, A. Krebs and T. Link, Tetrahedron Lett., 1990, 31, 6625; (b) J. Suffert, Tetrahedron Lett., 1990, 31, 7437; (c) A. G. Myers, P. M. Harrington and E. Y. Kuo, J. Am. Chem. Soc., 1991, 113, 694; (d) P. Magnus and T. Pitterna, J. Chem. Soc., Chem. Commun., 1991, 541.
8 (a) K. Nakatani, K. Arai, N. Hirayama, F. Matsuda and S. Terashima, Tetrahedron Lett., 1990, 31, 2323; (b) K. Nakatani, K. Arai, K. Yamada and S. Terashima, Tetrahedron Lett., 1991, 32, 3405.

9 Other examples for acyclic dienediyne systems; (a) K. Fujiwara, H. Sakai and M. Hirama, J. Org. Chem., 1991, 56, 1688; (b) R. Bruckner, S. W. Scheuplein and J. Suffert, Tetrahedron Lett., 1991, 32, 1449; (c) J. Suffert and R. Bruckner, Tetrahedron Lett., 1991, 32, 1453.
10 A. G. Myers, P. J. Proteau and T. M. Handel, J. Am. Chem. Soc., 1988, 110, 7212.
11 N. E. Poopeiko, E. I. Kvasyuk, I. A. Mikhailopulo and M. J. Lidaks, Synthesis, 1985, 605.
12 M. Yamaguchi and I. Hirao, Tetrahedron Lett., 1983, 24, 391. See also, H. C. Brown, U. S. Racherla and S. M. Singh, Tetrahedron Lett., 1984, 25, 2411.
13 G. Stork, L. D. Cama and D. R. Coulson, J. Am. Chem. Soc., 1974, 96, 5268; G. Stork and J. F. Cohen, J. Am. Chem. Soc., 1974, 96, 5270.

[^0]: \dagger The reduction of 11 presumably involves 1,2 -silyl migration prior to reduction and a further migration back to give the major triol 13. A similar silyl migration across the quaternary centre into the other side chain causing partial racemization was not observed however.
 \ddagger Use of smaller proportions of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and CuI made the coupling reaction substantially slower and sometimes caused isomerization of the stereochemistry of the trisubstituted double bond.

[^1]: § Satisfactory spectroscopic data were obtained for all new compounds.

 Selected spectroscopic data: 20: $[\alpha]_{D^{20}}+68.0\left(c 0.98\right.$, hexane); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 1.32,1.56\left(2 \times \mathrm{s}, 2 \times 3 \mathrm{H}, \mathrm{CMe}_{2}\right), 1.81(\mathrm{~m}, 2 \mathrm{H}$, $\left.12-\mathrm{CH}_{2}\right), 2.04\left(\mathrm{~m}, 2 \mathrm{H}, 11-\mathrm{CH}_{2}\right), 2.38(\mathrm{dd}, 1 \mathrm{H}, J 5.7,3.9 \mathrm{~Hz}, 6 \alpha-\mathrm{CH})$, $2.98(\mathrm{dd}, 1 \mathrm{H}, J 5.7,2.5 \mathrm{~Hz}, 6 \beta-\mathrm{CH}), 3.16(\mathrm{~d}, 1 \mathrm{H}, J 2.7 \mathrm{~Hz}, 7-\mathrm{CH}), 3.46$ (dd, 1H, J3.8, 2.5 Hz, 5-CH), 3.49 (s, 3H, OMe), 4.15 (dd, 1H, J8.5, $6.8 \mathrm{~Hz}), 4.37(\mathrm{t}, 1 \mathrm{H}, J 6.7 \mathrm{~Hz}, 15-\mathrm{CH}), 4.51(\mathrm{dd}, 1 \mathrm{H}, J 8.4,6.7 \mathrm{~Hz}$, $14-\mathrm{CH}), 5.29(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{CH})$, and $6.25(\mathrm{~m}, 1 \mathrm{H}, 13-\mathrm{CH})$; IR (neat) $v / \mathrm{cm}^{-1} 3300,3000,2950,2230,2100,1615,1450,1370,1215,1090$ and $855 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z} 299\left[(\mathrm{M}-\mathrm{Me})^{+}\right], 271,213,184,153,101$ and 43.

 3: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 1.29,1.62\left(2 \times \mathrm{s}, 2 \times 3 \mathrm{H}, \mathrm{CMe}_{2}\right), 1.65(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{OAc}), 1.90\left(\mathrm{~m}, 2 \mathrm{H}, 12-\mathrm{CH}_{2}\right), 2.13\left(\mathrm{~m}, 2 \mathrm{H}, 11-\mathrm{CH}_{2}\right), 2.60(\mathrm{~m}, 1 \mathrm{H}$, $6 \alpha-\mathrm{CH}$), 3.43 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.45 (m, 1H, $6 \beta-\mathrm{CH}$, obscured by OMe), $4.13(\mathrm{dd}, 1 \mathrm{H}, J 8.5,6.9 \mathrm{~Hz}, 15-\mathrm{CH}), 4.42(\mathrm{dd}, 1 \mathrm{H}, J 8.5,6.1 \mathrm{~Hz}$, $15-\mathrm{CH}), 4.59(\mathrm{t}, 1 \mathrm{H}, J 6.5 \mathrm{~Hz}), 5.25(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{CH}), 5.66(\mathrm{dd}, 1 \mathrm{H}, J$ $9.6,3.7 \mathrm{~Hz}, 5-\mathrm{CH})$ and $6.07(\mathrm{~m}, 1 \mathrm{H}, 13-\mathrm{CH})$; IR $\left(\mathrm{CCl}_{4}\right) \mathrm{v} / \mathrm{cm}^{-1} 3000$, $2950,2280,1750,1370,1090,1030$ and $850 \mathrm{~cm}^{-1} ; m / z 356(\mathrm{M})^{+}, 341$ $\left[(\mathrm{M}-\mathrm{Me})^{+}\right], 255,239,196,152,101$ and 43.

 25: $[\alpha]_{\mathrm{D}}{ }^{20}+63.8\left(c 1.86, \mathrm{CCl}_{4}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 1.25,1.46(2 \times \mathrm{s}$, $\left.2 \times 3 \mathrm{H}, \mathrm{CMe}_{2}\right), 1.84\left(\mathrm{~m}, 2 \mathrm{H}, 11-\mathrm{CH}_{2}\right), 2.06\left(\mathrm{~m}, 2 \mathrm{H}, 10-\mathrm{CH}_{2}\right), 2.64$, $2.88\left(2 \times \mathrm{d}, 2 \times 1 \mathrm{H}, J 6.0 \mathrm{~Hz}, 5-\mathrm{CH}_{2}\right), 3.04(\mathrm{~d}, 1 \mathrm{H}, J 2.4 \mathrm{~Hz}, 6-\mathrm{CH})$, 3.88 (br t, $1 \mathrm{H}, J 6.5 \mathrm{~Hz}, 14-\mathrm{CH}$), 3.98 (br dd, $1 \mathrm{H}, J 8.4,6.7 \mathrm{~Hz}$, $14-\mathrm{CH}$), 4.20 (pair of dd, total 1 H , each $J 8.5,6.3 \mathrm{~Hz}, 13-\mathrm{CH}$), 5.26 $(\mathrm{m}, 1 \mathrm{H}, 8-\mathrm{CH})$ and $6.24(\mathrm{~m}, 1 \mathrm{H}, 12-\mathrm{CH})$; IR $\left(\mathrm{CCl}_{4}\right) \mathrm{v} / \mathrm{cm}^{-1} 3340$, 3010, 2950, 2240, 2110, 1370, 1215, 1070 and $850 \mathrm{~cm}^{-1} ; m / z 270(\mathrm{M})^{+}$, $255\left[(\mathrm{M}-\mathrm{Me})^{+}\right], 225,212,183,153,101$ and 43.

