Acid-Catalysed C–H Activation of Ethene and Linking of Alkynes at a Diruthenium Centre

Lucy A. Brady, ^a Andrew F. Dyke, ^a Stephanie E. Garner, ^a Véronique Guerchais, ^b Selby A. R. Knox, ^{*} ^a John P. Maher, ^a Sara M. Nicholls ^a and A. Guy Orpen ^a

^a School of Chemistry, The University, Bristol BS8 1TS, UK
^b Laboratoire de Chimie des Organométalliques, UA CNRS 415, Université de Rennes I, Campus de Beaulieu, 35042
Rennes, France

The Ru=Ru double-bonded μ -alkyne complexes [Ru₂(μ -CO)(μ -RC₂R)(η -C₅H₅)₂] react slowly or not at all with ethene and alkynes even under forcing conditions, but in the presence of acid C–H activation of ethene and alkyne-linking occur rapidly at room temperature to give di- μ -vinyl complexes [Ru₂(CO)(μ -CR=CHR)(μ -CH=CH₂)(η -C₅H₅)₂] and metallacyclopentadiene complexes [Ru₂(CO)(μ -C₄R₄)(η -C₅H₅)₂] respectively; the acid catalysis is shown to proceed *via* the formation of a Ru=Ru triple-bonded μ -vinyl cation [Ru₂(μ -CO)(μ -CR=CHR)(η -C₅H₅)₂]⁺.

Carbon-hydrogen bond activation and carbon-carbon bond formation at transition metal centres are fundamental processes which attract considerable attention. Relatively little is yet known, however, about the nature and the extent of these processes at a dinuclear metal centre, although our recent studies indicate that C-C bond formation can occur very readily.¹⁻⁴ We now report that a μ -alkyne diruthenium system can be induced to effect C-H activation of ethene at room temperature and 1 atm by acid catalysis and identify the steps involved. The acid-catalysed linking of alkynes (C-C bond formation) in the same system is also described.

The μ -alkyne complexes $[Ru_2(\mu-CO)(\mu-RC_2R)(\eta-C_5H_5)_2]$ 1⁵ contain a short Ru=Ru double bond, but this unsaturation is not reflected in high reactivity because of the kinetic stabilisation provided by the steric protection of the cyclopentadienyl ligands and alkyne substituents. Thus, **1a** reacts slowly over 6 h with ethene (1 atm) only above 110 °C to give a low (12%) yield of the di- μ -vinyl complex $[Ru_2(CO){\{\mu-C(CF_3)=CHCF_3\}}(\mu-CH=CH_2)(\eta-C_5H_5)_2]$ **2a**,[†] while **1b** does not react even at 150 °C. However, in the presence of tetrafluoroboric acid the activation energy for this ethene addition process is dramatically reduced. Thus, **1a** now affords **2a** in 65% yield *at room temperature* within 2 h, while **1b** is induced to give **2b**,[†] albeit only in 5% yield. The structure of 2a[‡] has been established by X-ray diffraction and the results are summarised in Fig. 1 and in its caption. As implied by the spectroscopic evidence, the Ru–Ru single bond of 2a is bridged by two vinyl ligands derived from the μ -CF₃C \equiv CCF₃ ligand of 1a and ethene respectively, with both vinyls interacting with Ru(1) through σ bonds and with Ru(2) through η^2 interactions. The bond lengths indicate that the CF₃-substituted vinyl ligand binds more strongly to Ru(2) and more weakly to Ru(1) than does the unsubstituted vinyl, consistent with it being the more effective π -acceptor and poorer σ -donor.

There is strong evidence that the acid-catalysed addition of ethene to the complexes 1 follows the sequence $1 \rightarrow 3 \rightarrow 5 \rightarrow 2$

Fig. 1 Molecular geometry of 2a; cyclopentadienyl hydrogen atoms have been omitted for clarity. Important bond lengths (Å) include: Ru(1)-Ru(2) 2.703(1), Ru(1)-C(1) 1.846(6), Ru(1)-C(3) 2.102(5), Ru(1)-C(6) 2.051(5), Ru(2)-C(3) 2.037(5), Ru(2)-C(4) 2.160(6), Ru(2)-C(6) 2.077(5), Ru(2)-C(7), 2.212(5), C(3)-C(4) 1.451(7), C(6)-C(7), 1.403(8).

‡ Crystal data for **2a**: C₁₆H₁₄F₆ORu₂, M = 538.0, monoclinic, space group $P2_1/n$ (no. 14), a = 8.404(1), b = 15.334(2), c = 13.579(2) Å, β = 99.58(1)°, V = 1725.4(4) Å³, Z = 4, $D_c = 2.07$ g cm⁻³, $\lambda = 0.71073$ Å, $\mu = 18.1$ cm⁻¹, F(000) = 1040, T = 295 K.

Data were collected on a Nicolet P3m diffractometer for a unique quadrant of reciprocal space with $4 < 20 < 50^\circ$. The structure was solved by heavy-atom methods and refined by least-squares analysis to R 0.031 for 2342 unique, absorption-corrected, observed $[I > 2\sigma(I)]$ intensity data. Atomic coordinates, bond lengths and angles, and displacement parameters have been deposited with the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

[†] The new complexes were characterised by elemental analyses and IR and NMR (${}^{1}H$, ${}^{13}C{}^{1}H$ } and ${}^{19}F{}^{1}H$) spectra. Selected data: 2a, orange crystals, v(CO) (hexane) at 1985s cm⁻¹; ¹H NMR (CDCl₃), δ 10.66 (dd, J 10, 7 Hz, CH=CH₂), 5.41 (s, C₅H₅), 4.94 (s, C₅H₅), 4.21 (dd, J7, 2 Hz, CH=CH₂), 1.97 (dd, J10, 2 Hz, CH=CH₂) and 1.46 (q, J 10 Hz, CHCF₃); ¹³C{¹H} NMR (CDCl₃), δ 202.4 (s, CO), 165.5 (s, CH=CH₂), 154.4 (q, J 43 Hz, CCF₃), 131.5 (q, J 274 Hz, CF₃), 128.9 (q, J 274 Hz, CF₃), 89.9 (s, C₅H₅), 83.6 (s, C₅H₅), 56.9 (q, J 37 Hz, CHCF₃) and 49.7 (s, CH=CH₂); ${}^{19}F{}^{1}H{}$ NMR (CDCl₃), $\delta - 53.8$ (dq, J 12, 10 Hz, CHCF₃) and -50.1 (q, J 12 Hz, CF₃). **4**, orange crystals, v(CO) (CH₂Cl₂) at 1888s cm⁻¹; ¹H NMR (CD₂Cl₂), δ 5.23 (s, C₅H₅), 5.15 (s, C₅H₅), 2.95 (q, J 10 Hz, CHCF₃), 2.46 (s, MeCN) and 2.28 (s, MeCN); ¹³C{¹H} NMR [(CD₃)₂CO] δ 218.0 (s, CO), 152.0 (q, J 37 Hz, CCF₃), 132.1 (s, CN), 131.9 (q, J 276 Hz, CF₃), 128.7 (s, CN), 128.1 (q, J 275 Hz, CF₃), 89.0 (s, C₅H₅), 87.9 (s, C₅H₅), 68.0 (qq, J 36, 3 Hz, CHCF₃), 4.0 (s, Me) and 3.5 (s, Me); ¹⁹F{¹H} NMR (CD₂Cl₂), δ -55.2 (dq, J 12, 10 Hz, CHCF₃) and -48.7 (q, J 12 Hz, CF₃). 6, yellow crystals, v(CO) (CH₂Cl₂) at 2027s cm⁻¹; ¹H NMR [(CD₃)₂CO] δ 12.52 (q, J 8, 1 Hz, CHMe), 5.61 (s, C₅H₅), 5.51 (s, C₅H₅), 3.85 (q, J 9 Hz, CHCF₃), 3.28 (d, J 7Hz, CHMe) and 2.64 (s, MeCN); ¹³C{¹H} NMR [(CD₃)₂CO], δ 194.9 (s, CHMe), 162.4 (q, J 37 Hz, CCF₃), 131.4 (s, CN), 129.8 (q, J 273 Hz, CF₃), 126.2 (q, J 276 Hz, CF₃), 93.7 (s, C₅H₅), 90.1 (s, C₅H₅), 70.1 (q, J 33 Hz, CHCF₃), 43.7 (s, CH*Me*) and 3.6 (s, MeCN); ${}^{19}F{}^{1}H$ NMR [(CD₃)₂CO], δ -54.5 (dq, J 12, 9 Hz, CHCF₃) and -50.9 (q, J 12 Hz, CF₃). 7c, purple-red crystals, v(CO) (hexane) at 1951s cm⁻¹; ¹H NMR (CDCl₃), δ 5.22 (s, C_5H_5), 5.11 (s, C₅H₅); ¹³C{¹H} NMR (CDCl₃), δ 196.2 (s, CO), 146.5 (q, J 44 Hz, CCF₃), 127.8 (q, J 271 Hz, CF₃), 123.2 (q, J 271 Hz, CF₃), 87.4 (s, C_5H_5) and 86.8 (s, C_5H_5); ¹⁹F{¹H} NMR (CDCl₃), δ - 52.8 (q, br, J 13 Hz, CF₃) and -47.3 (q, br, J 13 Hz, CF₃).

Scheme 1 Reagents and conditions: i, H+; ii, MeCN; iii, C₂H₄ (1 atm, 25 °C); iv, -H+; v, R'C=CR'

as laid out in Scheme 1. Thus, after mixing dichloromethane solutions of 1a (v_{CO} 1808 cm⁻¹) and ethene-saturated HBF4·OEt2, rapid-scanning IR spectroscopy revealed the presence after 20 s of a new cationic species with a bridging carbonyl band at 1868 cm⁻¹, which was gradually replaced over 100 s by a second species displaying a terminal band at 2007 cm⁻¹; this in turn transformed slowly over 2 h to give **2a**. The first-formed species was trapped by acidifying an acetonitrile solution of 1a, when the complex $[Ru_2(MeCN)_2(\mu-$ CO){ μ -C(CF₃)=CHCF₃}(η -C₅H₅)₂]+ 4[†] was obtained quantitatively, indicating that initial protonation of the µ-alkyne ligand occurs to give a highly unsaturated µ-vinyl cation $[Ru_2(\mu-CO)(\mu-CR=CHR)(\eta-C_5H_5)_2]^+$ 3. The species derived from the reaction of **3a** with ethene, with the 2007 cm^{-1} band, is sufficiently long-lived that it can be detected by ¹H NMR spectroscopy at 0°C. This reveals the presence of a µ-ethylidene group [δ 12.38 (q, J7 Hz, 1H) and 3.01 (d, J7 Hz, 3H)], a μ -vinyl proton [δ 3.78 (q, ${}^{3}J_{HF}$ 9 Hz, 1H)] and inequivalent cyclopentadienyl ligands [δ 5.10 (s, 5H) and 5.17 (s, 5H)], in the formulation $[Ru_2(CO)(\mu-CHMe){\mu$ accord with $C(CF_3)=CHCF_3\{(\eta-C_5H_5)_2\}^+$ 5a. Although this second unsaturated intermediate could not be isolated it was also trapped by addition of acetonitrile, as the stable complex[Ru₂(CO)(MeCN)(μ -CHMe){ μ -C(CF₃)=CHCF₃}(η - $(C_5H_5)_2$ + 6[†] in 70% yield. In dichloromethane slow dissociation of MeCN from 6 over 20 h resulted in its conversion to 2a via 5a.

The key to this acid-catalysed C–H activation of ethene is the protonation of a four-electron μ -alkyne ligand to give μ -vinyl complexes **3** which are (*a*) cationic and (*b*) 30-electron species with a formal Ru≡Ru triple bond. They are therefore very electrophilic and coordinate ethene readily compared with neutral 32-electron 1. The subsequent isomerisation of coordinated ethene to ethylidene at a diruthenium centre, implicit in the generation of 5 from 3, may be assisted by the unsaturation of the dimetal unit. The unsaturation of 5 is also crucial in allowing a hydrogen of the ethylidene methyl group to be transferred to the dimetal centre in a β -elimination process, followed by proton ejection to give the 34-electron product 2.

The reactions of alkynes with the complexes 1 are also catalysed by acid. Thus, whereas 1a and b react with alkynes $R'C_2R'$ ($R' = CO_2Me \text{ or } CF_3$) under heptane or xylene reflux over 1-4 days to give the metallacyclopentadiene complexes $[Ru_2(CO)(\mu-C_4R_2R'_2)(\eta-C_5H_5)_2]$ 7[†] in 50–90% yields, in the presence of acid the linking occurs *at room temperature* within 1-2 h to give 7 in 20–75% yields. More striking still, while 1a and PhC=CPh do not react even under xylene reflux, addition of a few drops of HBF₄·OEt₂ to a dichloromethane solution of the reagents at room temperature results in the formation of 7e in 75% yield after 2 h. The structure of 7c has been established by X-ray diffraction and will be reported elsewhere with a full account of the thermal alkyne linking reactions.

We suggest that this acid-catalysed alkyne linking involves the 30-electron μ -vinyl cations **3** reacting with an alkyne to give an unsaturated μ -butadienyl cation **8**, which then deprotonates to give **7**, as depicted in Scheme 1. Recent studies in this Laboratory on the reactions of μ -vinyl ligands with alkynes have established that μ -butadienyl complex formation and subsequent deprotonation to metallacyclopentadienyl complexes of type **7** is common.⁶

We are grateful to the SERC for the award of Research Studentships (to A.F.D., S.E.G. and S.M.N.) and for support and Johnson Matthey plc for a loan of ruthenium trichloride.

Received, 21st October 1991; Com. 1/05310H

References

- 1 J. A. K. Howard, S. A. R. Knox, N. J. Terrill and M. I. Yates, J. Chem. Soc., Chem. Commun., 1989, 640.
- 2 M. J. Fildes, S. A. R. Knox, A. G. Orpen, M. L. Turner and M. I.
- Yates, J. Chem. Soc., Chem. Commun., 1989, 1680. 3 G. C. Bruce, S. A. R. Knox and A. J. Phillips, J. Chem. Soc., Chem. Commun., 1990, 716.
- 4 G. C. Bruce, B. Gangnus, S. E. Garner, S. A. R. Knox, A. G. Orpen and A. J. Phillips, J. Chem. Soc., Chem. Commun., 1990, 1360.
- 5 R. E. Colborn, A. F. Dyke, B. P. Gracey, S. A. R. Knox, K. A. Macpherson, K. A. Mead and A. G. Orpen, J. Chem. Soc., Dalton Trans., 1990, 761.
- 6 G. C. Bruce, S. A. R. Knox and A. J. Phillips, unpublished work.