375

Redox and Non-redox Reactivity of Dihydrogen Sulfide at a Triply Bonded Dimetal Core: Hydrido, Hydrosulfido and *gem*-Dithiolato Complexes of Dirhenium

Keng-Yu Shih, Phillip E. Fanwick and Richard A. Walton*

Department of Chemistry, Purdue University, 1393 BRWN Building, West Lafayette, IN 47907-1393, USA

While H₂S oxidatively adds to the electron-rich Re–Re triple bond of $\text{Re}_2X_4(\mu\text{-dppm})_2$ (X = Cl or Br; dppm = $\text{Ph}_2\text{PCH}_2\text{PPh}_2$) to give $\text{Re}_2(\mu\text{-H})(\mu\text{-SH})X_4(\mu\text{-dppm})_2$, non-redox reactions occur upon reaction of H₂S with cis-Re₂(μ -O₂CR)₂Cl₂(μ -dppm)₂ (R = Me or Et) in the presence of HBF₄·Et₂O to give either cis-Re₂(μ -SH)₂Cl₂(μ -dppm)₂, when thf (tetrahydrofuran) or CHCl₃ is used as the solvent, or the *gem*-dithiolato complexes cis-Re₂(μ -S₂CR'R'')₂Cl₂(μ -dppm)₂ and cis-Re₂(μ -S₂CHR'')₂Cl₂(μ -dppm)₂ in the presence of ketones (R'R''CO) and aldehydes (R''CHO).

There has been a growing interest in the use of H_2S as a source of H_2 and organosulfur compounds,¹ although the isolation of H_2S complexes themselves have proved to be rather difficult^{2,3} and only very recently has the first H_2S complex been structurally characterized.³ Interestingly, the reactions of H_2S with dimetal complexes that contain metal–metal multiple bonds and which can serve as multi-electron redox reagents,^{4,5} have not been described, although these hold the potential for some interesting chemistry that may not be accessible with other systems. In the present report, we describe the preliminary results of studies that encompass the reactions of H_2S with triply bonded dirhenium(II) compounds and which yield products that are the results of either redox or non-redox behaviour at the electron-rich M=M bond.

When deoxygenated thf solutions of the complexes $\text{Re}_2X_4(\mu\text{-dppm})_2$ (X = Cl or Br; dppm = $\text{Ph}_2\text{PCH}_2\text{PPh}_2$)⁵ are exposed to a stream of gaseous H₂S for a few minutes and then stirred for *ca*. 5 h, the green-brown dirhenium(11) complexes $\text{Re}_2(\mu\text{-H})(\mu\text{-SH})X_4(\mu\text{-dppm})_2$ (1a, X = Cl; 1b, X = Br) are obtained in isolated yields of 70–80%. The structure of these diamagnetic compounds has been established by an X-ray structure determination on 1b; the Re-Re distance is

2.4566(7) Å.† The presence of μ -H and μ -SH ligands has been confirmed by ¹H NMR spectroscopy (CD₂Cl₂) which reveals resonances for the μ -H and μ -SH ligands at δ -6.34 (m, 1H) and δ +16.1 (m, 1H) for **1a**, and δ -7.30 (m, 1H) and δ + 16.2 (m, 1H) for **1b**, respectively. This represents the first case of the oxidative addition of the S-H unit across an electron-rich triple bond ($\sigma^2 \pi^4 \delta^2 \delta^{*2}$ configuration).

In contrast to this reaction course, we observe quite different behaviour when the dirhenium(11) complexes of the type cis-Re₂(μ -O₂CR)₂Cl₂(μ -dppm)₂ 2⁶ are treated with H₂S.‡ The carboxylato species 2 can be activated by strong acid $(HBF_4 \cdot Et_2O \text{ or } HPF_6 \cdot H_2O)$ in non-aqueous solvents through labilization of the carboxylate groups. This generates the reactive, weakly solvated $[\text{Re}_2\text{Cl}_2(\mu\text{-dppm})_2]^{2+}$ moiety the enhanced electrophilic character of which, compared to the more readily oxidized neutral $\text{Re}_2X_4(\mu\text{-dppm})_2$,⁵ results in non-redox reactions with H₂S, the actual reaction course being dependent on the solvent used. When a suspension of 2 (0.30 g; ca. 0.2 mmol) in deoxygenated thf or CHCl₃ (6 ml) is treated with $HBF_4 \cdot Et_2O(0.15 \text{ ml})$ and then with a stream of gaseous H₂S the green hydrosulfido complex cis-Re₂(µ- $SH_2Cl_2(\mu$ -dppm)₂ 3 precipitates in essentially quantitative yield (eqn. 1).§

$$cis-\text{Re}_{2}(\mu-\text{O}_{2}\text{CR})_{2}\text{Cl}_{2}(\mu-\text{dppm})_{2} + 2\text{H}_{2}\text{S} \xrightarrow{\text{tht or}}_{\text{CHCl}_{3}}$$
$$cis-\text{Re}_{2}(\mu-\text{SH})_{2}\text{Cl}_{2}(\mu-\text{dppm})_{2} + 2\text{RCO}_{2}\text{H} \quad (1)$$

The single crystal X-ray structure of **3** is shown in Fig. 1.¶ The complex possesses a cradle-like geometry⁷ in which the two μ -SH ligands have replaced the carboxylate bridges. The Re–Re distance of 2.2577(5) Å is in accord with the retention of a Re≡Re bond.^{4–6} The ¹H NMR spectrum (CD₂Cl₂ at room temp.) does not reveal a clearly discernible S-*H* resonance, although the IR spectrum (Nujol mull) of **3** shows a sharp and clearly defined, albeit weak, v(S–H) mode at 2451 cm⁻¹. The ³¹P{¹H} NMR spectrum shows relatively broad resonances at

[†] Structural refinement is complicated by the presence of a badly disordered lattice diethyl ether molecule. At the present stage of refinement (R = 0.053 and $R_w = 0.070$) the bridging hydrido ligand and hydrogen on the bridging hydrosulfido ligand have not been located. Full structural details will be published in due course.

[‡] Satisfactory elemental microanalyses were obtained for all compounds.

 This same reaction course ensues in the absence of added HBF₄ but the reaction is slower and the product less pure. Presumably, the H₂S saturated solutions are sufficiently acidic to facilitate the slow release of RCO₂H with concomitant coordination of HS⁻.

¶ *Crystal data* for Re₂(μ -SH)₂Cl₂(μ -dppm)₂·0.5CH₂Cl₂ **3** at +20 °C: space group *P*2₁/*c* with *a* = 23.280(3), *b* = 13.040(2), *c* = 16.582(3) Å, β = 94.43(2)°, *Z* = 4, *D*_c = 1.748 g cm⁻³. An empirical absorption correction was applied and all hydrogen atoms were included. The final residuals were *R* = 0.033 (*R*_w = 0.037) and GOF = 1.425 for 5275 data with *I* > 3.0\sigma(*I*).

Crystal data for Re₂(μ -S₂CMe₂)Cl₂(μ -dppm)₂·CH₂Cl₂ 4 at +20 °C: space group *P*2₁/*n* with *a* = 13.093(5), *b* = 23.807(9), *c* = 18.832(4) Å, $\beta = 106.29(2)^\circ$, *Z* = 4, *D*_c = 1.654 g cm⁻³. An empirical absorption correction was applied and all hydrogen atoms were included. The final residuals were *R* = 0.053 (*R*_w = 0.069) and GOF = 1.941 for 5555 data with *I* > 3.0 σ (*I*).

Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1. δ *ca.* -6.5 and δ *ca.* -3.8 in accord with the retention of pairs of chemically inequivalent dppm phosphorus atoms in solution as is the case in the solid-state structure (Fig. 1).

When acetone is used in place of thf and CHCl₃ as the solvent, the reaction proceeds to give the green gem-dithiolato complex cis-Re₂(μ -S₂CMe₂)Cl₂(μ -dppm)₂ 4 in ca. 85% yield, the identity of which was established by X-ray crystallography.¶ This complex also possesses a cradle-like geometry, with a bridging S₂CMe₂ ligand replacing the two μ -SH units (Fig. 2). The Re–Re distance of 2.2544(6) Å is identical to that in **3**. This complex, which has virtual C_{2v} symmetry, shows a singlet at $\delta - 10.1$ in its ³¹P{¹H} and ³¹P NMR spectra (CD₂Cl₂ at room temp.). We find that the use of other ketones and aldehydes in place of acetone leads to a range of gem-dithiolato complexes cis-Re₂(μ -S₂CR'R")Cl₂(μ -dppm)₂ [see eqn. (2)], so this is a simple and quite general route to species of this type (isolated yields 60–80%).

cis-Re₂(
$$\mu$$
-O₂CR)₂Cl₂(μ -dppm)₂ + 2H₂S + R'R"CO →
cis-Re₂(μ -S₂CR'R")Cl₂(μ -dppm)₂ + 2RCO₂H + H₂O (2)

[R' = H when R'' = H, Me or Et; R' = Me when R'' = Me, Et, Pr or Pr'; R' = R'' = Et or Ph; R', R'' = cyclopentyl or cyclohexyl]

Although **3** is converted into **4** when treated with a mixture of HBF₄·Et₂O and H₂S in acetone, it does not do so in the absence of H₂S or the absence of HBF₄·Et₂O, thereby indicating that it may not be an intermediate in the direct conversion of *cis*-Re₂(μ -O₂CR)₂Cl₂(μ -dppm)₂ into **4**. Rather, the formation of **4** most likely involves the direct attack of the *gem*-dithiol upon the weakly solvated [Re₂Cl₂(μ -dppm)₂]²⁺ moiety since *gem*-dithiols (along with thioketones or thioaldehydes) are formed by the reactions of H₂S with ketones and aldehydes under acidic and basic conditions.⁸

Complexes that contain the methanedithiolato bridge μ -S₂CH₂ are quite well documented and several have been structurally characterized.^{9–11} However, examples of *gem*-dithiolato ligand bridges of the type μ -S₂CXY are surprisingly

Fig. 1 ORTEP representation of the structure of the dirhenium complex in crystals of $\text{Re}_2(\mu\text{-SH})_2\text{Cl}_2(\mu\text{-dppm})_2\cdot 0.5\text{CH}_2\text{Cl}_2$ 3 with the phenyl group atoms of the dppm ligands omitted. Thermal ellipsoids are drawn at the 50% probability level. Selected bond distances (Å) and bond angles (°): Re(1)-Re(2) 2.2577(5), Re(1)-Cl(1) 2.525(2), Re(1)-Sl(1) 2.495(2), Re(2)-Sl(1) 2.475(2), Re(1)-Pl(1) 2.392(2), Re(1)-Pl(1) 2.392(2), Re(1)-Re(1)-Sl(2), Re(1)-Cl(1) 153.82(6), Pl(1)-Re(1)-Pl(1) 97.12(8), Sl(1)-Re(1)-Sl(2) 74.85(9), Sl(1)-Re(1)-Pl(1) 91.30(8), Re(2)-Re(1)-Sl(1) 62.54(6), Re(1)-Sl(1)-Re(2) 54.03(5).

Fig. 2 ORTEP representation of the structure of the dirhenium complex in crystals of $\text{Re}_2(\mu\text{-}\text{S}_2\text{CMe}_2)\text{Cl}_2(\mu\text{-}\text{dppm})_2\cdot\text{CH}_2\text{Cl}_2 4$ with the phenyl group atoms of the dppm ligands omitted. Thermal ellipsoids are drawn at the 50% probability level. Selected bond distances (Å) and bond angles (°): Re(1)–Re(2) 2.2544(6), Re(1)–Cl(1) 2.501(3), Re(1)–S(1) 2.471(3), Re(2)–S(1) 2.485(3), Re(1)–P(11) 2.399(3), Re(1)–P(12) 2.397(3); Re(2)–Re(1)–Cl(1) 160.74(7), P(11)–Re(1)–P(12) 99.98(9), S(1)–Re(1)–S(2) 68.81(9), S(1)–Re(1)–P(12) 96.3(1), Re(2)–Re(1)–S(1) 63.27(7), Re(1)–S(1)–Re(2) 54.12(6).

scarce, although a few examples exist in cyclopentadienylmolybdenum chemistry in the cases where X = Me when Y = OH,¹² NH_2 ,¹² Me^{9a} or Ph.^{9b} However, none of these compounds has been structurally characterized by X-ray crystallography although there is one example of a structurally characterized 2,4-dithiametallacyclobutane complex, (η -C₅Me₅)(Me₃P)Ir(S₂CMe₂), that contains a chelating S₂CMe₂ ligand.¹³ Our work provides the first series of μ -gem-dithiolate complexes in which a wide variety of alkyl substituents have been incorporated and which can be prepared in high yield in such a simple and straightforward fashion. This work demonstrates the effectiveness of the triply bonded dirhenium unit as a template for new metal–sulfur chemistry, the scope of which is under further investigation. This strategy provides an entry 377

into the chemistry of compounds that contain the previously unknown metal-metal bonded $Re(\mu-SH)_2Re$ and $Re(\mu-S_2CR'R'')Re$ moieties.

Support from the National Science Foundation (Grant CHE91-07578 to R. A. W.) is gratefully acknowledged.

Received, 12th November 1991, Com. 1/05740E

References

- See, for example, the following recent studies: A. M. Mueting, P. Boyle, R. Wagner and L. H. Pignolet, *Inorg. Chem.*, 1988, 27, 271; D. P. Klein, G. M. Kloster and R. G. Bergman, *J. Am. Chem. Soc.*, 1990, 112, 2022; D. M. Antonelli and M. Cowie, *Inorg. Chem.*, 1990, 29, 3339; D. Rabinovich and G. Parkin, *J. Am. Chem. Soc.*, 1991, 113, 5904.
- 2 H. Vahrenhamp, Angew. Chem., Int. Ed. Engl., 1975, 14, 322 and references cited therein; C. G. Kuehn and H. Taube, J. Am. Chem. Soc., 1976, 98, 689; M. Herberhold and G. Süss, J. Chem. Res. (S), 1977, 246; P. J. Harris, S. A. R. Knox, R. J. McKinney and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1978, 1009; G. Urban, K. Sünkel and W. Beck, J. Organomet. Chem., 1985, 290, 329; K. Raab and W. Beck, Chem. Ber., 1985, 118, 3830; J. Amarasekera and T. B. Rauchfuss, Inorg. Chem., 1989, 28, 3875.
- 3 D. Sellman, P. Lechner, F. Knoch and M. Moll, *Angew. Chem.*, *Int. Ed. Engl.*, 1991, **30**, 552.
- 4 F. A. Cotton and R. A. Walton, *Multiple Bonds Between Metal Atoms*, Wiley, New York, 1982.
- 5 R. A. Walton, Polyhedron, 1989, 8, 1689.
- 6 A. R. Cutler, D. R. Derringer, P. E. Fanwick and R. A. Walton, J. Am. Chem. Soc., 1988, 110, 5024; D. R. Derringer, E. A. Buck, S. M. V. Esjornson, P. E. Fanwick and R. A. Walton, Polyhedron, 1990, 9, 743.
- 7 J. Wu, P. E. Fanwick and C. P. Kubiak, J. Am. Chem. Soc., 1989, 111, 7812. F. A. Cotton, K. R. Dunbar and M. G. Verbruggen, J. Am. Chem. Soc., 1987, 109, 5498.
- 8 R. Mayer, G. Giller, M. Nitzschke and J. Jentzsch, Angew. Chem., Int. Ed. Engl., 1963, 2, 370; R. Mayer, J. Morgenstern and J. Fabian, Angew. Chem., Int. Ed. Engl., 1964, 3, 277.
- 9 (a) M. McKenna, L. L. Wright, D. J. Miller, L. Tanner, R. C. Haltiwanger and M. Rakowski DuBois, J. Am. Chem. Soc., 1983, 105, 5329; (b) J. C. V. Laurie, L. Duncan, R. C. Haltiwanger, R. T. Weberg and M. Rakowski DuBois, J. Am. Chem. Soc., 1986, 108, 6234; (c) J. Birnbaum, R. C. Haltiwanger, P. Bernatis, C. Teachout, K. Parker and M. Rakowski DuBois, Organometallics, 1991, 10, 1779.
- 10 A. Shaver, P. J. Filtzpatrick, K. Steliou and I. S. Butler, J. Am. Chem. Soc., 1979, 101, 1313.
- 11 R. D. Adams, N. M. Golembeski and J. P. Seleque, J. Am. Chem. Soc., 1981, 103, 546; R. D. Adams, Acc. Chem. Res., 1983, 16, 67.
- 12 D. E. Coons, J. C. V. Laurie, R. C. Haltiwanger and M. Rakowski DuBois, J. Am. Chem. Soc., 1987, 109, 283.
- 13 D. P. Klein, G. M. Kloster and R. G. Bergman, J. Am. Chem. Soc., 1990, 112, 2022.