377

C₆₀Pd_n: The First Organometallic Polymer of Buckminsterfullerene

Hideo Nagashima,* ^a Akihito Nakaoka, ^a Yahachi Saito, ^b Masanao Kato, ^a Teruhiko Kawanishi ^a and Kenji Itoh ^a

^a Department of Materials Science and Research Center for Chemometrics, Toyohashi University of Technology, Toyohashi, Aichi 441, Japan

^b Department of Electrical and Electronic Engineering, Mie University, Tsu, Mie, Japan

The organometallic polymer, $C_{60}Pd_n$, is prepared from C_{60} and a Pd⁰ precursor, and the palladium to C_{60} ratio (*n*) can be varied by thermal disproportionation.

Recent explosive developments of research on C_{60} and other spherical carbon clusters have provided fruitful contributions to understanding physical properties and chemical reactivities of these super aromatic molecules.^{1,2} An interesting feature of C_{60} is the high reactivity of its surface towards metallic species; Fagan and coworkers reported $(\eta^2-C_{60})Pt(PPh_3)_2$ and $[(C_5-Me_5Ru^+)_n(C_{60})]^{n+}$ as the first organometallic complexes including the coordination of π -electrons in C_{60} to the transition metal centre.³ Several metallic species bound to the surface of C_{60} were also detected in the gas phase.⁴ In this

paper, we report an application of this particular reactivity of C_{60} with transition metal species to the synthesis of the first organometallic polymers. Thus, reaction of C_{60} with a palladium complex, $Pd_2(dba)_3 \cdot CHCl_3$ (dba = dibenzylideneacetone) 1, results in facile replacement of the dba ligand by

$C_{60} + n/2 \operatorname{Pd}_2(\operatorname{dba})_3 \cdot \operatorname{CHCl}_3 \rightarrow C_{60} \operatorname{Pd}_n + 3n/2 \operatorname{dba} + \operatorname{CHCl}_3 (1)$

 C_{60} to form $C_{60}Pd_n$ as shown in eqn. (1).

Exposure of a deep-purple benzene solution of 1 to a violet benzene solution of C_{60} furnished a dark-brown suspension. Filtration of the reaction mixture gave a black air-stable solid, which is insoluble in common organic solvents. The free dba ligand was quantitatively recovered from the filtrate. Electron

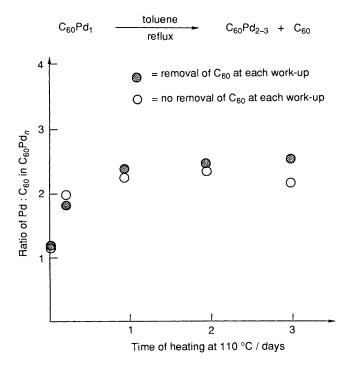
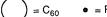
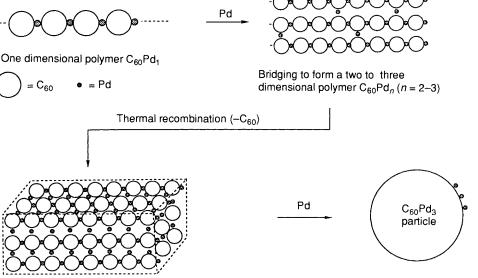



Fig. 1 Thermal recombination of Pd and C_{60} in $C_{60}Pd_n$

Pd

probe microanalysis (EPMA) of the solid showed the composition consisting of carbon and palladium, indicating the formation of organopalladium polymer $C_{60}Pd_n$. The Pd: C_{60} ratios in $C_{60}Pd_n$ determined either by EPMA or elemental analysis were dependent on the charged ratios of C_{60} to 1 as shown in Table 1. With excess amounts of 1 to C_{60} , the Pd : C_{60} ratios in $C_{60}Pd_n$ were consistent with the ratios of charged 1 to C_{60} . In contrast, $C_{60}Pd_n$ (n = ca. 1) was always formed, when excess amounts of C_{60} were reacted with 1. In this case, unreacted C₆₀ was recovered from the reaction mixture, quantitatively. Fourier transform infrared (FTIR) spectra of $C_{60}Pd_n$ showed absorption at 527, 576.5 1182.5 and 1429 cm⁻¹ similar to that of C_{60} ,⁵ though the peaks were broader.


A suspension of the palladium polymer $C_{60}Pd_1$ in toluene was heated under reflux for several days to result in substantial increase of the Pd: C_{60} ratio in the polymer with regeneration of free C_{60} . As shown in Fig. 1, the Pd : C_{60} ratio was quickly increased to 2:1 within a day, and then gradually reached the ratio ca. 3:1. These results clearly suggests that thermal recombination of C_{60} and Pd induced the conversion of kinetically produced $C_{60}Pd_1$ to a thermodynamically more stable form, C₆₀Pd₃.

These results suggest that the palladium atoms act as a binder of C_{60} by coordination to the π -electrons on the

Table 1 Preparation of $C_{60}Pd_n^a$

Run	Charged ratio of Pd : C ₆₀	<i>T</i> /°C	<i>t/</i> h	Yield $(\%)^b$	$Formed ratio of Pd: C_{60}$	
					Elemental analysis	ЕРМА
1	1:2	R.t. ^c	3	29 (70)	1.27 ± 0.04	1.19 ± 0.07
2		0	6	35 (65)	1.03 ± 0.03	1.00 ± 0.02
3	1:1	R.t.	3	67 (27)	0.93 ± 0.04	1.26 ± 0.03
4		0	6	94	1.03 ± 0.03	1.04 ± 0.01
5	2:1	R.t.	3	91	2.15 ± 0.03	2.05 ± 0.35
6	3:1	R.t.	3	74	2.84 ± 0.10	2.64 ± 0.05
7	4:1	R.t.	3	97	3.57 ± 0.05	3.27 ± 0.29

^a All reactions were carried out in benzene or toluene (entries 2 and 4) under a nitrogen atmosphere. Each experiment was carried out at least twice to confirm the reproducibility of the Pd : C₆₀ ratio. ^b Figures in parentheses are yields of recovered C_{60} . ^c R.t. = room temperature.

Three dimensional C60Pd3

Deposit of Pd atoms on the surface of C60Pd3 to form $C_{60}Pd_n$ (n > 3)

Fig. 2 Proposed mechanism for the formation of $C_{60}Pd_n$

aromatic surface; two C₆₀ atoms are bound to one palladium centre analogous to a dumbbell complex (C₆₀)₂Ni^{+,4} A proposed mechanism of the formation of $C_{60}Pd_n$ is illustrated in Fig. 2, in which a one dimensional polymer $C_{60}Pd_1$ is formed at the first stage, and then, insertion of additional palladium atoms between the polymer chains make bridges to form $C_{60}Pd_n$ (n > 1). The reaction of 1 with C_{60} may give (C_{60})PdL₂, where L = dba or solvent, as an intermediate; however, its isolation has so far been unsuccessful due to facile replacement of L by additional C_{60} . Since a C_{60} derivative, $C_{60}[Pt(PEt_3)_2]_6$, in which six platinum-phosphine species are bound to a C₆₀ atom, has been reportedly characterized by Fagan and Calabrese,⁶ it is reasonable that $C_{60}Pd_3$, in which each C₆₀ atom is coordinated to six palladium atoms, is a thermodynamically stable form of the organometallic polymer. It is of interest that $C_{60}Pd_n$ (n > 3) was formed from a 4 : 1 mixture of 1 to C_{60} . In this case, an excess of palladium atoms would be deposited on the surface of $C_{60}Pd_3$. We discovered that heterogeneous hydrogenation of diphenylacetylene occurred with a catalytic amount of C₆₀Pd_{3.5} in cyclohexane, whereas the catalytic activity was not observed with $C_{60}Pd_n$ (n < 3). This result indicates that surface palladium species exist on $C_{60}Pd_{3.5}$, but not on $C_{60}Pd_n$ (n < 3).

As metallic derivatives of C_{60} , alkali metal-doped C_{60} such as $C_{60}K_3$ have actively been investigated.⁷ These crystalline

compounds are ionic and unstable to air and water. In contrast, $C_{60}Pd_n$ is neutral, amorphous and stable to air.⁸

Received, 4th November 1991; Com. 1/056061

References

- 1 H. W. Kroto, J. R. Heath, S. G. O'Brien, R. F. Curl and R. E. Smalley, *Nature*, 1985, **318**, 162; W. Krätschmer, L. D. Lamb, K. Fostiropoulos and D. R. Huffman, *Nature*, 1991, **347**, 354.
- 2 For recent reviews; J. Stoddart, Angew. Chem., Int. Ed. Engl., 1991, **30**, 70; F. Diedrich and R. L. Whetten, Angew. Chem., Int. Ed. Engl., 1991, **30**, 678.
- 3 P. J. Fagan, J. C. Calabrese and B. Malone, *Science (Washington DC)*, 1991, **252**, 548.
- 4 Y. Huang and B. S. Freiser, J. Am. Chem. Soc., 1991, 113, 8186.
- 5 J. P. Hare, T. J. Dennis, H. W. Kroto, R. Taylor, A. Wahab Allaf, S. Balm and D. R. M. Walton, J. Chem. Soc., Chem. Commun., 1991, 412.
- 6 P. J. Fagan, R. J. Calabrese and B. Malone, J. Am. Chem. Soc., 1991, **113**, 9408.
- 7 A. F. Hebard, M. Rosseinsky, R. C. Haddon, D. W. Murphy, S. H. Grarum, T. T. M. Palstra, A. P. Ramirez and A. R. Kortan, *Nature*, 1991, **350**, 600; K. Tanigaki, T. W. Ebbesen, S. Saito, J. Mizuki, J. S. Tsuai, Y. Kubo and S. Kuroshima, *Nature*, 1991, **352**, 222.
- 8 Structural studies: T. Inabe, Y. Maruyama, H. Nagashima and K. Itoh, unpublished results.