Preparation of AsF₄+PtF₆- containing the Tetrafluoroarsenic(v) Cation ## Matthias Broschag, Thomas M. Klapötke* and Inis C. Tornieporth-Oetting Institute für Anorganische und Analytische Chemie, Technische Universität Berlin, W-1000 Berlin 12, Germany The AsF_4^+ cation which represents the last missing member in the series of the tetrahalogenoarsenic(v) cations has been prepared by the reaction of Pt, AsF_5 and F_2 under electrical resistance heating of the platinum wire. All of the tetrahalogenoarsenic(v) cations, $AsCl_4^+, ^{1,2}$ $AsBr_4^{+3,4}$ and $AsI_4^+, ^{5}$ have been prepared and characterized except AsF_4^+ . This led naturally to the attempted synthesis of a salt of the tetrafluoroarsenic(v) cation. However, all of our systematic attempts to prepare a BF_4^- (UV photolysis of BF_3 , F_2 and AsF_3 at $-196\,^{\circ}C$), 6 a BiF_6^- (reaction of BiF_5 and AsF_5 at $250\,^{\circ}C$) 6 or a $SbCl_6^-$ salt [eqns. (1) and (2)] were unsuccessful. In fact we were surprised to find that AsCl₄+ had been formed quantitatively in reactions (1) and (2).⁶ $$AsF_3 + ClF + SbCl_5 \rightarrow AsCl_4 + SbCl_2F_4 -$$ (1) $$3 \text{ AsF}_3 + \text{ClF}_3 + \text{Cl}_2 + 3 \text{ SbCl}_5 \rightarrow 3 \text{ AsCl}_4 + \text{SbCl}_2 F_4 - (2)$$ We estimated that the reaction of PtF_5 with AsF_5 (see below) and the reaction of Pt, F_2 and AsF_5 [eqn. (3)] are both **Table 1** Raman (647.09 nm, $20\,^{\circ}\text{C}$, $20\,\text{mW}$) and IR (pure powder between Si discs) data of $\text{AsF}_4\text{+PtF}_6^-$, GeF_4 , 14 $\text{AsCl}_4\text{+SbCl}_2\text{F}_4$, 6 $\text{GeCl}_4\text{+I}$ and PtF_6^- (XeF^+ salt) 15 (cm $^{-1}$) | $AsF_4^+PtF_6^-$ | | | $AsCl_4^+(SbCl_2F_4)^{-6.a}$ | | $(\mathrm{XeF^+})\mathrm{PtF_6^{-15}}$ | | |------------------------|---------|---------------------|------------------------------|----------------------|--|------------| |
Raman | IR | GeF ₄ ¹⁴ | Raman | GeCl ₄ 14 | Raman | Assignment | | 748 (7) | | 738 ^b | 422 (10) | 397 | | v_1 | | 272 (5) | | 205^{c} | 156 (7) | 125 | | v_2 | | 825 (3) | 810m,br | 800^{d} | 500 (5) | 459 | | v_3^- | | 287 (3) | 287sh | 260^{e} | 187 (6) | 171 | | v_{+} | | 656 (10) | | | | | 655 (10) | v_1 | | 593 (2) }
571 (2) } | | | | | 592 (2) }
580 (2) } | v_2 | | | 570m | | | | | v_3 | | | 268s | | | | | v_4 | | 244 (2)
238 (3) | | | | | 246 (1)
230 (2) | ν_5 | " AsCl₄+ frequencies correspond to those of AsCl₄+ from refs. 1, 2 and 14. " Raman, $v_1 = 738$ (10). " Calc. from IR combination bands, $v_2 = 205 \pm 5$ cm⁻¹. " AsCl₄+ from refs. 1, 2 and 14. " Raman, $v_1 = 738$ (10). " Calc. from IR combination bands, $v_2 = 205 \pm 5$ cm⁻¹. " AsCl₄+ from refs. 1, 2 and 14. " Raman, $v_1 = 738$ (10). " Calc. from IR combination bands, $v_2 = 205 \pm 5$ cm⁻¹. " AsCl₄+ from refs. 1, 2 and 14. " Raman, $v_1 = 738$ (10). " Calc. from IR combination bands, $v_2 = 205 \pm 5$ cm⁻¹. " Calc. from IR combination bands, $v_3 = 800$ cm⁻¹. " Calc. from IR combination bands, $v_4 = 260$ cm⁻¹. " Calc. from IR combination bands, $v_5 = 205 \pm 5$ Scheme 1 Energy cycle for the formation of AsF₄+PtF₆-- (kcal mol⁻¹) thermodynamically allowed on the basis of a simple Born–Haber cycle (Scheme 1). $$Pt + AsF_5 + 5/2 F_2 \rightarrow AsF_4 + PtF_6$$ (3) Subsequently we prepared $AsF_4^+PtF_6^-$ using an apparatus as shown in Fig. 1 and identified the yellow salt by Raman and infrared spectroscopy (Table 1). In a typical reaction the Pt wire (0.200 g, 1.03 mmol) was heated to red heat and reacted with an excess of a 5:2 F_2 – AsF_5 (AsF_5 , 1.2 mmol; F_2 , 4.2 mmol) mixture. A yellow solid formed and was transferred into the Raman capillary while all remaining volatile species were removed under dynamic vacuum. The Raman and infrared data of the product showed AsF_4+PtF_6- to be present (Table 1). The part of the Raman spectrum assigned to AsF_4+ consists of four bands which are very similar in intensity and relative position to those observed for $AsCl_4+1.2$ and the isoelectronic GeF_4 , ¹⁴ and is consistent with its possessing T_d geometry. The heat of formation of AsF_4 + PtF_6 ⁻ was estimated from the heat of reaction eqn. (2) (*cf.* Scheme 1) and the heat of the formation of AsF_5 (-295.6 kcal mol)¹⁷ to be -468 kcal mol⁻¹ (1 cal = 4.184 J). The decomposition according to eqn. (4) is therefore seen to be thermodynamically unfavourable (ΔH_4 = +42.7 kcal mol⁻¹; $\Delta_f H^\circ$, PtF_5 (g) = -130.0 kcal mol⁻¹).⁹ $$AsF_4 + PtF_6 - (s) \rightarrow AsF_5(g) + PtF_5(g)$$ (4) Under an inert-gas atmosphere AsF_4 + PtF_6 - is stable at room temperature and melts under decomposition at 108 \pm Fig. 1 Reaction vessel used for the preparation of AsF_4 + PtF_6 -: [PTFE = poly(tetrafluoroethylene); 1 bar = 10^5 Pa] $5\,^{\circ}$ C. With water, however, the compound reacts violently and hydrolyses often under the appearance of fire. The yellow solution in HSO₃F shows a rather broad absorption from 470 nm downwards with a maximum of $\lambda \leq 350$ nm. As the cut-off by the used cell was at 300 nm the expected shoulder at approximately 280 nm could not be observed (*c.f.* KPtF₆, $\lambda = 400$, 280 nm). In the mass spectrum (E.I., 70 eV, 80 °C) besides the very strong peaks (rel. intensity 80–100%) of PtF_n+ (n = 0,1,...6) only signals owing to PtF_m²⁺ (m = 0,1,2,3), AsF₃+ and AsF₂+ (5–15%) could be detected. A qualitative magnetic measurement showed the compound to be paramagnetic, however, owing to the extreme sensitivity towards air and moisture an accurate scale had not yet been possible. We thank the Deutsche Forschungsgemeinschaft (KL 636/2-1) and the Fonds der Chemischen Industrie for financial [†] $U_{\rm L}$ calculated from the molecular volume $V_{\rm M}$ (ų) using the linear relationship: $U_{\rm L}$ (kcal mol $^{-1}$) = 556.3 $(V_{\rm M})^{-0.33}$ + 26.3; $^{11.12}$ $V_{\rm M}({\rm PtF_6}^-)$ was taken to be equal to $V_{\rm M}({\rm PtF_6})$ = 105 ų, 10 $V_{\rm M}({\rm AsF_4}^+)$ was taken to be equal to $V_{\rm M}({\rm GeF_4})$ = 116 ų (d = 2.176 g cm $^{-3}$). 13 This gives $U_{\rm L}$ (AsF $_4$ +PtF $_6$ -) = -118.3 kcal mol. support. We also thank Professor Dr L. Rösch (Wacker Chemie) for providing silicon discs for IR spectroscopy. Received, 9th October 1991; Com. 1/05131H ## References - 1 A. Müller and A. Fadini, Z. Anorg. Allg. Chem., 1967, 349, 164. - 2 J. Weidlein and K. Dehnicke, Z. Anorg. Allg. Chem., 1965, 337, 113. - 3 T. Klapötke, J. Passmore and E. G. Awere, J. Chem. Soc., Chem. Commun., 1988, 1426. - 4 T. Klapötke and J. Passmore, J. Chem. Soc., Dalton Trans., 1990, 3815 - I. Tornieporth-Oetting and T. Klapötke, Angew. Chem., 1989, 101, 1742; Angew. Chem., Int. Ed. Engl., 1989, 28, 1671. - 6 I. C. Tornieporth-Oetting and T. M. Klapötke, to be submitted. - 7 J. E. Huheey, *Inorganic Chemistry*, Harper, Cambridge, 3rd edn. 1983, appendix. - 8 D. A. Johnson, *Some Thermodynamic Aspects of Inorganic Chemistry*, Cambridge University Press, Cambridge, 2nd edn., 1983, appendix. - L. N. Sidorov and M. I. Nikitin, *Dokl. Akad. Nauk. SSSR*, 1979, 248, 1387. - N. Bartlett, Angew. Chem., 1968, 80, 453; Angew. Chem., Int. Ed. Engl., 1968, 7, 433. - 11 T. E. Mallouk, G. L. Rosenthal, G. Müller, R. Brusasco and N. Bartlett, *Inorg. Chem.*, 1984, 23, 3167. - 12 T. J. Richardson, F. L. Tarzella and N. Bartlett, J. Am. Chem. Soc., 1986, 108, 4937. - 13 N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Pergamon Press, Oxford, 1984, p. 439. - 14 K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, 4th edn., 1986. - 15 F. O. Sladky, P. A. Bulliner and N. Bartlett, J. Chem. Soc. A, 1969, 2179. - 16 A. D. Caunt, L. N. Short and L. A. Woodward, *Trans. Faraday Soc.*, 1952, 48, 873 and references cited therein. - 17 N. Burford, J. Passmore and J. C. P. Sanders, in *Molecular Structure and Bonding*, ed. J. F. Liebman and A. Greenberg, VCH Weinheim, 1989, vol. 11, p. 53.