Azoacetates as Synthons for the Azetidinone and Diazetidinone Ring Systems

Carol A. Downey, John P. James,* James Lawler, Patrick O'Malley and Siobhan Wolfe School of Chemical Sciences, Dublin City University, Dublin 9, Ireland

The azoacetates derived from aryl hydrazones of α , α -disubstituted- β -ketoamides are readily transformed into azetidinones or diazetidinones.

Aryl hydrazones (R¹R²C=N-NH-Ar) of ketones are in general readily transformed to azoacetates [R¹R²C(OAc)-N=N-Ar] on treatment with lead tetraacetate (LTA), iodobenzene diacetate or thallium triacetate in solvents such as acetic acid and methylene chloride. 1,2 Azoacetates 2 are

easily obtained by oxidation of aryl hydrazones 1 derived from β -keto compounds. Acyclic azoacetates have received relatively little attention as substrates for cyclisation to heterocycles with the exception of their transformation to five-membered heterocycles e.g. imidazoles and pyrazoles.³

$$N-NH$$
 $N-NH$
 NO_2
 $N=N$
 $N=N$
 NO_2
 NO_2

g: R = acetyl
h: X = OH

Scheme 1 Reagents: i, lead tetraacetate, methylene chloride; ii, base,

a; X = NH-phenyl

 \mathbf{c} ; $\mathbf{X} = \mathbf{OEt}$ \mathbf{d} ; $\mathbf{X} = \mathbf{NH}_2$

e; R = phenyl **f**; R = *p*-chlorophenyl

acetone or alcohol; iii, NaOH, H2O; iv, DCC, MeCN

b: X = NH-p-chlorophenyl

We now report an important contribution to the chemistry of azoacetates **2** which results in their cyclisation to four-membered rings **3** or **5** (see Table 1). Azoacetates **2a**–**d** are formed in high yield from the corresponding hydrazones **1a**–**d** and LTA in methylene chloride (>80%). Azoacetates of α , α -dimethylated- β -ketoamides **2a**,**b** cyclise to the azetidin-

Table 1

	Reagent	Product [yield (%)]
2a	K ₂ CO ₃ , acetone	3e (28)
2b	K ₂ CO ₃ , acetone	3f (50)
2a	KCN, propanol	3e (44), 4a (13)
2b	KCN, propanol	3f (34), 4b (44)
2b	KCN, ethanol	3f (48), 4b (25)
2c	KCN, ethanol	4c (30)
4a	H^+, H_2O	4h (55)
4c	NaOH, H ₂ O	4h (80)
4h	DCC, MeCNa	5 (45)

^a DCC = 1,3-dicyclohexylcarbodiimide.

2-one ring 3e, f, a β -lactam with unusual substitution. Acetylation of the primary amide 2d allows cyclisation after base treatment to the lactam 3g. When the reaction of 2a, b with base is carried out in alcohol the β -lactam is accompanied by an unusual rearrangement product 4a, b. The azoacetate 2c derived from β -ketoester hydrazone 1c gives an improved yield of the rearrangement product 4c. The rearrangement is thought to follow deacetylation of the azoacetate. On hydrolysis, 4a-c give the carboxylic acid 4b which is readily cyclised to the 1,2-diazetidin-3-one 5, and represents a new route to this ring system (see Scheme 1). In previous reports on base treatment of azoacetates the products are five-membered rings together with parent ketone and hydrazone.

The generality of the reactions described and their extension to more appropriately substituted structural types is under investigation.

Received, 12th December 1991; Com. 1/06238G

References

- M. J. Harrison, R. O. C. Norman and W. A. F. Gladstone, J. Chem. Soc. (C), 1967, 735.
- 2 R. N. Butler, G. J. Morris and A. M. O'Donohue, J. Chem. Soc., Perkin Trans. 2, 1981, 1243.
- 3 W. A. F. Gladstone and R. O. C. Norman, *J. Chem. Soc.*, 1965, 5177; 1975, 3048; 1966, 1527.
- 4 J. W. Timberlake and E. S. Elder, in *Comprehensive Heterocyclic Chemistry*, series ed. A. R. Katritzky and C. W. Rees, vol. ed. W. Lwowski, Pergamon Press, Oxford, 1984, vol. 7 (5.15), pp. 449–489.
- 5 W. A. F. Gladstone, M. J. Harrison and R. O. C. Norman, J. Chem. Soc. (C), 1966, 1781.