Polydentate Tertiary Amine Aluminium Hydride Adducts: Monomeric *versus* **Polymeric Species**

Jerry L. Atwood,*^a Frederick R. Bennett,^b Cameron Jones,^b George A. Koutsantonis,^b Colin L. Raston*^b and **Kerry D. Robinsona**

a Department of Chemistry, University of Alabama, Tuscaloosa, Alabama, 35487, USA

b Division of Science and Technology, Griffith University, Nathan, Brisbane, Queensland, 4 1 1 1, Australia

Treatment of H₃AINMe₃ with 1,3,5-trimethyIhexahydro-1,3,5-triazine (tmtz) yields trigonal bipyramidal, monomeric [H3Al(tmtz)2], **1,** or polymeric [H3Al(tmtz)],, **2,** which undergo N-CH2 cleavage at *ca.* 123 "C; nitrogen-atoms in **1** and **2** are in apical positions, as also established for polymeric $[H_3A/(N,N,N',N'-tetramethylpropylenediamine)]_{\infty}$, in accordance with *ab initio* molecular orbital calculations on the model system H₃AI(NH₃)₂.

Tertiary amine aluminium hydride adducts are versatile reagents in synthesis,¹ and as precursors for delivering aluminium metal to surfaces.²⁻⁵ Recently we established that the ubiquitous trimethylamine adduct, H_3A/NMe_3 , and some other unidentate amine adducts, are dimeric in the solid, possessing unsymmetrical hydride bridges,⁶ in contrast with monomeric H_3 AlNMe₃ in the gas phase.⁷ The availability of more than one tertiary amine centre can result in *(i)* five-coordinate species, *e.g.* H₃Al(NMe₃)₂,⁸ polymeric H_3 Al(tmeda)⁹ (tmeda = $N, N, N'N'$ -tetramethylethylenediamine) (based on incomplete X-ray structure determinations), and dimeric $H_3A\hat{l}$ (tmeda) (vapour phase),¹⁰ and (*ii*) ionic species for higher polydentate tertiary species for higher polydentate tertiary amines, $[\mathbf{H}_2\mathbf{Al}(N, N, N', N'', \mathbf{N''})$ -pentamethyldiethylenetriamine)]+[AlH₄]–, and *trans-*[H₂Al(*N, N', N'', N'''*-tetramethyl-
cyclam)]+[AlH₄]–.¹¹

1,3,5-Trirnethylhexahydro-1,3,S-triazine (tmtz) is potentially a tridentate tertiary amine, but because of steric strain in any derived four-membered chelate rings oligomeric species are more likely, in which the metal forms a polymeric network

Fig. 1 Projections of *(a)* $[H_3A](tmtz)_2]$, **1**, *(b)* $[H_3A](tmtz)]_{\infty}$, **2**, and (c) $[H_3A](\text{tmpda})]_{\infty}$, 3, with 20% thermal ellipsoids for non-hydrogen atoms and arbitrary radii for hydrogen atoms shown, hydrides for 3 excepted. Selected bond distances (\hat{A}) and angles $(°)$: **1** Al(1)-N(1, 3) 2.188(4), 2.187(4), Al(1)-H(la, b) 1.64(4), 1.70(6), N(l)-Al(l)-N(3) 177.4(2); N(1)-Al(1)-H(1a, b) 90(1), 91(2), N(3)-Al(1)-H(1a, b) 89(1), 92(2), H(1a)-Al(1)-H(1b) 120(1), H(1a)-Al-H(1a)' 120(2). **2** Al(1)-N(1, 3) 2.231(5), 2.198(6), Al(1)-H(la, b, c) 1.61, 1.51, 1.48; N(1)-Al(1)-N(3) 174.9(2), N(1,3)-H(la. b, c) 84-93.3Al(l)-N(l, 2) 2.217(4), 2.200(4), Al(1)-H(1, 2, 3) 1.61(4), 1.47(4), 1.62(5); $N(1)$ -Al(1)-H(1, 2, 3) 88(2), 93(2), 87(2), N(2)-Al(1)-H(1, 2, 3) 92, 94, 95, N(1)-Al(1)-N(2) 177.9(1), H(1)-Al(1)-H(2, 3) 114(2), 124(3), H(2)-Al(l)-H(3) 122 (3).

Scheme 1

with the metal centres connected to two difierent tmtz units, as for the related ligand hexamethylenetetramine.¹² We report that tmtz forms neutral rather than ionic species, monomeric, $[H_3A](tmtz)_2]$, **1**, and polymeric, $[H_3A](tmtz)]_{\infty}$ **2,** and that the 1:l adduct of aluminium hydride with *N, N, N',* **N'-tetramethylpropylenediamine** (tmpda), *viz.* $[H₃A](\text{tmpda})_{\infty}$, 3, is also polymeric in the solid, although it is dimeric in benzene. **13** Connectivity has been established using X-ray diffraction data and the resulting refinements represent the first complete structure determinations of five-coordinate aluminium hydride species. We also report a high level theoretical study on the model compound, $H_3Al(NH_3)_2$.

Synthesis of 1, 2 and 3,¹³ involved treating H₃AlNMe₃ with the corresponding amine in the appropriate ratio, Scheme $1.†$ No further uptake of aluminium hydride from H_3AINMe_3 is evident on the formation of **2** despite the availability of a nitrogen lone pair on each tmtz moiety (see below). Compound **1** decomposes thermally to **2** then undergoes N-CH2 cleavage at *ca.* 123 °C yielding on hydrolysis NMe₃ and $CH₂(NMe₂)₂$, and some tmtz. The aluminium hydride adduct of $CH₂(NMe₂)₂$ also undergoes N-CH₂ cleavage but at ambient temperature. 14 All other aluminium hydride tertiary

f Compound **1:** a solution of **1,3,S-trimethylhexahydro-l,3,S-triazinc** $(0.40 \text{ ml}, 0.37 \text{ g}, 2.84 \text{ mmol})$ in OE ₂ (10 ml) was added over 15 min to a slurry of $1,3,5$ -trimethylhexahydro- $1,3,5$ -triazinealane (0.45 g, 2.84) mmol) in OEt₂ (20 ml) at 0 °C. Upon warming to room temperature the suspension dissolved and the resulting solution was stirred for 30 min after which solvent was removed in vacuo leaving a white solid. Recrystallisation from OEt₂ (5 ml) yielded colourless prisms (0.71 g, 86% yield). M.p. 93-94 °C; satisfactory C, H and N analyses were obtained for compounds 1 and 2; ¹H NMR (250 MHz, C_6D_6 , 25 °C): δ 2.16 (s, 18H, NMe) 3.16 (br, 12H, NCH₂) 3.49 (br, 3H, AlH); ¹³C NMR (62.8 MHz, C₆D₆, 25 °C): δ 39.6 (NMe) 75.8 (NCH₂); ²⁷Al NMR (78.18 MHz, C₆D₆, 25 °C): δ 102.6 (br); IR: v/cm⁻¹ 1717 (br, AIH).

Compoztrzd **2:** a solution of **1,3,5-trimethylhexahydro-1,3,S-triazine** $(0.84 \text{ ml}, 0.77 \text{ g}, 5.98 \text{ mmol})$ in OE ₂ (10 ml) was added over 30 min to a stirred solution of H_3 AlNMe₃ (0.54 g, 6.07 mmol) in OEt₂ (30 ml) at 0 "C. The resulting suspension was stirred at room temperature for 1 h after which solvent was removed *in vacuo* leaving a white solid. Recrystallisation from OEt₂ (100 ml) yielded colourless rods (0.72 g, 61% yield). M.p. 109–112 °C (decomp. > 123 °C); ¹H NMR (250 MHz, C_6D_6 , 25 °C): δ 1.10 (t, 3H, Me) 2.06 (s, 9H, NMe) 3.09 (br, 6H, NCH₂) 3.27 (qt, 2H, OCH₂) 3.93 (br, 3H, AlH); ¹³C NMR (62.8 MHz, C₆D₆, 25[°]C): δ 14.6 (Me) 39.5 (NMe) 65.3 (OCH₂) 75.3 (NCH₂); IR: v/cm^{-1} 1718 (br, AlH).

amine adducts, 6,10,11 including **3** and those based on tmeda and *N, N,* **N',N'-tetramethylbutylenediamine** (tmbda)," decompose to free amine, metal and hydrogen, at typically $>$ 100 °C.

Results of the X-ray structure determinations of **1-3\$** are presented in Fig. 1. Molecules in 1 have *m*-crystallographic symmetry whereas in **2** two tmtz ligands have m-crystallographic symmetry, and in 3 the asymmetric unit is AlH₃ and one diamine. In all three structures, and also in polymeric $H₃Al(tmbda)$,¹⁵ the metal centres are trigonal planar with the nitrogens in apical positions and A1-N distances (mean), **1,** 2.188, **2,** 2.217, **3,** 2.208 A. These distances are significantly longer than in monomeric mono-tertiary amine aluminium hydride derivatives, 2.063(8) for H_3 AlNMe₃ (gas phase),⁷ and 2.088(2) and 2.082(4) Å for weakly associated $[(H_3A1L)_2]$, L = benzyldimethylamine and 1-methyltetrahydropyridine,⁶ reflecting greater solvation at the metal centres. The earlier defined Al-N distances in $H_3Al(NMe_3)_2^8$ and $H_3Al(tmeda)^9$ dimensional polymeric strand results in a congested metal free N-centre, thus accounting for the lack of additional uptake of aluminium hydride. Five-coordinate adducts of aluminium hydride have also been structurally authenticated for phosphine and mixed phosphine-amine aluminium hydride adducts. 16 are similar, at 2.18(1) and 2.21 Å, respectively. In 2 the one

Collectively, structural information on bis(amine) aluminium hydride adducts clearly establish the preference for the $AH₃$ entity to be planar even if a chelate ring is likely to be relatively unstrained as would be the case in monomeric adducts of tmpda. *Ab initio* molecular orbital calculations§

 \ddagger *Crystal structure determinations* (*T* = 296 K; Enraf-Nonius CAD4 diffractometer, crystals mounted in capillaries): compound **1,** $C_{12}H_{33}AlN_6$, $M = 288.4$, monoclinic, space group $I2/m$, a_s $10.906(8)$, $b = 12.784(5)$, $c = 13.58(1)$ Å, $\beta = 99.99(4)^\circ$, $U = 1865$ Å³, $F(000) = 640$; $Z = 4$, $D_c = 1.034$ g cm⁻³, Mo-K $\alpha \lambda = 0.71069$ Å, $\mu(Mo-K\alpha) = 1.14$ cm⁻¹, specimen $0.25 \times 0.30 \times 0.30$ mm, 1714 unique reflections, 1043 with $I > 2.5\sigma(I)$ used in the refinement, $2\theta_{\text{max}} = 50^{\circ}$. Compound **2**, $C_6H_{18}AlN_3$. (OEt₂) 0.5, *M* = 196.3, orthorhombic, space group *Pmnn, a* = 11.569(1), *b* = 12.606(1), *c* = 15.532(2) Å, $U = 2265$ Å³, $F(000) = 768$; $Z = 8$, $D_c = 1.15$ g cm⁻³, Mo-K $\alpha \lambda = 0.71069 \text{ Å}$, $\mu(\text{Mo-K}\alpha) = 1.47 \text{ cm}^{-1}$, specimen 0.15×0.25 \times 0.40 mm, 2102 unique reflections, 1272 with $I \ge 2.5\sigma(I)$ used in the refinement, $2\theta_{\text{max}} = 50^{\circ}$. Compound **3**, $C_7H_{21}AlN_2$, $M = 160.2$, orthorhombic, space group *Pbca*, $a = 12.265(1)$, $b = 12.499(2)$, $c =$ 14.272(1) Å, $U = 2188 \text{ Å}^3$, $F(000) = 720$; $Z = 8$, $D_c = 0.98 \text{ g cm}^{-3}$, Cu-K $\alpha \lambda = 1.5418$ Å, μ (Cu-K α) = 11.7 cm⁻¹, specimen 0.20 × 0.25 × 0.35 mm, 1236 unique reflections, 1030 with $I > 3\sigma(I)$ used in the refinement, $2\theta_{\text{max}} = 110^{\circ}$.

The structures were solved by direct methods and refined by fullmatrix least-squares refinement using SHELX and XTAL programmes. Hydrogen atoms attached to Al were located and refined in $x, y, z, U_{iso}, 1, or x, y, z, 2$ and 3; hydrogens attached to carbon were included as invariants. Unit weights were used and the final residuals were *R* = 0.053, 0.077, 0.058, *R'* = 0.053, 0.077. 0.062, **1. 2** and **3.** respectively. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors. Issue No. 1.

§ Calculation used the Hondo/7 package¹⁹ on the Convex platform. To investigate the effects of polarization on the Al-N bonds the DZ basis sets were augmented with d -functions (DZP) on Al and N (exponents of d-functions were 0.3 and 0.8. respectively):. **A** comparison with earlier work on $H_3A_1NH_3^6$ shows that the Al-N bond length increases by only 0.017 Å , when the ECP approximation is implemented, and therefore, the ECP approximation represents a good compromise between economy and accuracy for this study.

were carried out on $H_3A1(NH_3)_2$ at the Hartree Fock (HF) level of theory using a double-zeta (DZ) then double-zeta plus polarisation (DZP). both with an effective core potential (ECP) for Al. '7 HF/DZP-ECP calculations converged with D_{3h} symmetry, Al-N 2.220, Al-H 1.611 Å, N-Al-H 90.0° $(N-H 1.005 \text{ Å}, Al-N-H 110.9^{\circ})$ which is close to the structures of 1–3. Starting with geometries for the isomeric C_{2v} and C_{s} trigonal bipyramidal structures for $H_3A/(NH_3)_2$ resulted in fragmentation to $H_3A_1NH_3$ and NH_3 which collectively are only 10.74 kcal mol⁻¹ (1 cal = 4.184 J) less stable than $H_3A1(NH_3)_2$. This is consistent with equilibrium between H_3 Al(NMe₃)₂ and H_3 AlNMe₃-NMe₃,¹⁸ and overall represents an energy inequality: C_{2v} and C_s H₃Al(NH₃)₂ < $H_3AINH_3-NH_3 < D_{3h} \overline{H}_3AI(NH_3)_2.$

We thank the Australian Research Council for a Grant and a Fellowship (G. A. K.), and the Department of Industry, Technology and Commerce (Australia) for support of this work. We also thank Karl Byriel for collection of some diffraction data.

Received, 3rd December 1991; Corn. 1106120H

References

- 1 E. M. Marlett and W. **S.** Park, *J. Org. Chem.,* 1990,55,2968 and references cited therein: F. G. N. Cloke, C. I. Dalby, M. J. Henderson, P. B. Hitchcock, C. H. L. Kennard, R. N. Lamb and C. L. Raston, *J. Chem.* Soc., *Chem. Commun.,* 1990,1394; B. M. Bulychev, *Polyhedron,* 1990, **9,** 387; E. M. Marlett, US Pat. 4 474 743. 1984.
- 2 D. L. Schmidt and R. Hellmann, US Pat. 3462288, T. E. G. Daenen, UK Pat. GB 2021 646, 1979.
- 3 W. L. Gladfelter, D. C. Boyd and K. F. Jensen, *Chem. Muter.,* 1989, **1.** 339 and references cited therein; **A.** T. **S.** Wee, A. J. Murrell, N. K. Singh, D. O'Hare and J. S. Ford,. *J. Chem. Soc., Chcm. Cornmuri.,* 1990, 11.
- 4 T. H. Baum, C. E. Larson and R. L. Jackson, *Appl. Phys. Lett.*, 1989, *55,* 1264.
- *5* T. P. Whaley and V. Norman, US Pat. 3206326, 1965; D. R. Carley and J. H. Dunn, US Pat. 3375 129, 1968.
- 6 J. L. Atwood, F. R. Bennett, F. M. Elms, C. Jones, C. L. Raston and K. D. Robinson, *J. Am. Chem. Soc.*, 1991, 113, 8183.
- 7 A. Almenningen, G. Gundersen, T. Haugen and A. Haaland, *Acta Chem. Scand.,* 1972, **26,** 3928.
- 8 C. W. Heitsch, C. E. Nordman and P. W. Parry, *Inorg. Chem.*, 1963. **2,** *508.*
- 9 G. Palenick, *Acta Crystallog..* 1964, **17.** 1573.
- 10 J. M. Davidson and T. Wartik, *J. Am. Chem. Soc.,* 1960,82,5506.
- 11 J. L. Atwood. C. Jones, C. L. Raston, and K. D. Robinson, *J. Chem. SOC., Chm. Commuri.,* 1991, 1697.
- 12 B. F. Abrahamas. B. F. Hoskins, J. Liu and R. Robson, *J. Am. Chem. Soc.,* 1991, **113.** 3045.
- 13 R. Archer, H. Young and R. Ehrlich, *Inorg. Chem.*, 1965, 4, 1358.
- 14 N. N. Grecnwood, B. P. Straughan and B. **S.** Thomas, *J. Chem. SOC. A,* 1968. 1248.
- 15 J. L. Atwood, C. Jones, C. L. Raston and K. D. Robinson, unpublished results.
- 16 F. R. Bennett. F. M. Elms, M. G. Gardiner, G. A. Koutsantonis, C. L. Raston and N. K. Roberts, *Organometallics*, in the press; F. R. Bennett, C. Jones, G. A. Koutsantonis and C. L. Raston, unpublished work.
- 17 W. R. Wadt and J. Hay, *J. Chem. Phys.,* 1985, **82,** 284.
- 18 C. W. Heitsch, *Nature,* 1962, **195,** 995.
- M. Dupuis, J. D. Watts, H. O. Villar and G. J. B. Hurst, Hondo Version 7.0, IBM, Kingston. New York, 1987.