Synthesis, Structure and Electrochemical Characterization of a New Non-oxo Vanadium(IV) Complex

Ademir Neves,* ^a Augusto S. Ceccato, ^a Ivo Vencato, ^a Yvonne P. Mascarenhas^b and Claudia Erasmus-Buhr^c

^a Departamento de Química, Universidade Federal de Santa Catarina, CEP-88049-Florianópolis-SC, Brazil
^b Instituto de Física e Química de São Carlos, Universidade de São Paulo, CEP-13560-São Carlos-SP, Brazil
^c Institut für Physikalische Chemie, Technische Hochschule Darmstadt, Petersenstrasse 20, D6100 Darmstadt, Germany

Reaction of N, N, N', N'-tetrakis(2-hydroxybenzyl)ethylenediamine (H₄tben) with VCl₃ in tetrahydrofuran in the presence of Et₃N affords [Et₃NH][V^{III}(tben)] which is oxidized by oxygen to the stable [V^{IV}(tben)] complex; the X-ray crystal structure, and the electrochemical, magnetic and electronic spectroscopic properties of [V^{IV}(tben)]·CH₂Cl₂ are reported.

It is well established that vanadium is present at the active site of certain enzymes, including haloperoxidases in sea algae and lichens¹ and some nitrogenases in nitrogen-fixing Azotobacter.² Furthermore, vanadium ions are bound to tyrosinate residues in vanadium-modified transferrin³ and amavadim,⁴ and certain sea squirts or tunicates⁵ (polyphenol ascidians) are able to store vanadium in high concentrations. In view of the importance of the interaction of $V^{111},\ V^{1V}$ and V^{V} with tyrosinate residues,^{3,5} vanadium-phenolate chemistry is receiving considerable attention.⁶ However, in contrast to the well known vanadium(1v)/(v)-phenolate complexes containing VO²⁺ or VO³⁺ units, only very few octahedral non-oxo V^{IV} and V^{V} complexes, the so-called 'bare' complexes, have been isolated and structurally characterized.7 The [VIV- $(cat)_{3}^{2-}$ (cat = catecholato)⁸ and $[LV^{1V}]^{+}$ $[H_{3}L = 1, 4, 7$ tris(5-tert-butyl-2-hydroxybenzyl-1,4,7-triazacyclononane)]9 ion complexes represent two structurally well characterized examples. More recently, we¹⁰ reported the electrochemical and electronic spectroscopic characterization of the less stable $[V^{IV}(bbpen)]^{2+}$ $[H_2bbpen = N, N'-bis(2-hydroxybenzyl)-$ N, N'-bis(2-pyridylmethyl)ethylenediamine] ion complex, for which the X-ray structure of the corresponding [VIII(bbpen)]+ has been described.¹⁰ In this work, we report the preparation, structural characterization, and electrochemical and electronic spectroscopic properties of a non-oxo vanadium(1v) complex, with a new N2O4-donor ligand which contains the ethylenediamine backbone and four phenolate-type pendant arms. This is part of our programme for preparation and characterization of vanadium complexes with bioinorganic relevance.

The ligand N, N, N', N'-tetrakis(2-hydroxybenzyl)ethylenediamine (H₄tben) was prepared in good yield by alkylation of N, N'-bis(2-hydroxybenzyl)ethylenediamine (H₂bben)¹¹ with 2-bromomethylphenyl acetate,¹² by the route in Scheme 1. The vanadium(III) complex was prepared as follows. A solution of VCl₃ in dry tetrahydrofuran (thf) was refluxed for 30 min under an argon atmosphere and equimolar quantities of H₄tben and Et₃N were added to the hot solution. A green precipitate of [Et₃NH][V(tben)] **1** was immediately formed. This material is very air-sensitive, and was characterized only by IR spectroscopy. Treatment of a hot solution of **1** in CH₂Cl₂ with dry O₂ afforded a clear deep-purple solution. After cooling the solution to 5 °C, a microcrystalline precipitate of purple [V^{1V}(tben)]·CH₂Cl₂ was formed, which was filtered off, washed with ethanol and air dried.[†] Single crystals of **2** suitable for X-ray crystallography were obtained by slow diffusion of diethyl ether into a CH₂Cl₂ solution of **2**.

The molecular[‡] structure and atomic numbering scheme of **2** are illustrated in Fig. 1. The vanadium(iv) ion is in a pseudo-octahedral environment, in which each of the two symmetrical halves of the tben⁴⁻ ligand are in a facial arrangement (*fac*-NO₂ donor set): two phenolate oxygen and two aliphatic nitrogen atoms of the ethylenediamine backbone

[†] All new compounds gave satisfactory elemental analysis (C, H, N).

[‡] Crystal data for 2: $[C_{30}H_{28}N_2O_4V]$ ·CH₂Cl₂, M = 616.44: monoclinic, P_{21}/c , $(C_{2h}^{5}$; No. 14), a = 10.360(1), b = 20.984(5), c = 13.322(4) Å, $\beta = 103.0(2)^{\circ}$, V = 2822(1) Å³, Z = 4, $D_{c} = 1.48$ g cm⁻³. Crystal dimensions $0.13 \times 0.45 \times 0.25$ mm, Mo-Kα ($\lambda = 0.7107$ Å); T = 298 K. Enraf-Nonius CAD-4 diffractometer. Data were reduced using the Structure Determination Package (SDP) and the structure was solved with the SHELX-76 program package. Hydrogen atoms were located from Fourier difference maps and fixed with *B* values of 3.95 Å²; $\mu = 5.25$ cm⁻¹; 4919 unique reflections; 2287 with $I > 3\sigma(I)$; 362 least-squares parameters; R = 0.052 ($R_w = 0.051$). Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

Scheme 1 Synthesis of the ligand H₄tben: *reagents and conditions*: i, thf, Et₃N, argon; ii, methanol, KOH

form the equatorial plane, where atoms of the same type occupy *cis*-positions with respect to each other. The remaining phenolate oxygen atoms, mutually *trans*, complete the coordination sphere. The V–N (amine) and V–O bond lengths [av. 2.182(5) and 1.874(4) Å] in the equatorial plane of **2** are 0.05 and 0.013 Å, respectively, shorter than the corresponding bond distances in the [V^{III}(bbpen)]⁺ complex,¹⁰ consistent with the higher oxidation state of the former. On the other hand, the mean value of the four V–O bond distances of 1.863(4) Å is significantly shorter than in the catecholate vanadium(IV) complex [Et₃NH][V^{IV}(cat)₃]·MeCN [av. 1.930(3) Å]⁸ and somewhat longer than in the [V^{IV}L][BPh₄] complex [av. 1.827(5) Å].⁹

The data for temperature dependence of the magnetic susceptibility of **2**, using the Faraday method, fit the Curie–Weiss law between 4.2 and 284.5 K with $\mu_{eff} = 1.64 \,\mu_B$, which is expected for a mononuclear complex of vanadium(IV) (d¹ configuration) with no or very small intermolecular magnetic coupling.

The electronic spectrum of 2 measured in MeCN solution consists of the following transitions at λ_{max}/nm ($\epsilon/dm^3 mol^{-1} cm^{-1}$): 512 (9800) and 400 (6500). The lowest energy band at 512 nm is assigned, by analogy with other reported 'bare' vanadium(IV) complexes,^{8–10} as being a phenolate-to-vanadium(IV) charge-transfer (CT) transition. The higher energy transition at 400 nm, which is absent in the free ligand, is also assigned to a phenolate-to-vanadium(IV) CT transition and probably arises from the different V–O bond lengths in **2**.

The electrochemical properties of **2** in dimethylformamide (dmf) have been investigated by cyclic voltammetric (CV) and coulometric techniques (Fig. 2). At scan rates of 50–400 mV s⁻¹ two well defined reversible one-electron-transfer waves were detected at $E_{1/2}^1 + 0.16$ V and $E_{1/2}^2$ of -0.84 V vs. Fc⁺/Fc. These data are consistent with the process shown in eqn. (1).

$$[V^{v}(tben)]^{+} + e^{-\frac{E_{1/2}^{1}}{\longleftarrow}}[V^{1v}(tben)] + e^{-\frac{E_{1/2}^{2}}{\longleftarrow}}[V^{111}(tben)]^{-} (1)$$

Fig. 1 X-Ray structure of **2**. Selected bond lengths (Å) and angles (°): V–O(1) 1.848(4), V–O(2) 1.853(4), V–O(3) 1.877(4), V–O(4) 1.872(4), V–N(1) 2.192(5), V–N(2) 2.171(5); O(1)–V–O(2) 168.0(2), O(1)–V–O(3) 96.6(2), O(1)–V–O(4) 90.3(2), O(1)–V–N(1) 84.8(2), O(1)–V–N(2) 88.0(2), O(2)–V–O(3) 91.1(2), O(2)–V–O(4) 98.3(2), O(2)–V–N(1) 85.9(2), O(2)–V–N(2) 83.8(2), O(3)–V–O(4) 94.4(2), O(3)–V–N(1) 91.1(2), O(3)–V–N(2) 173.9(2), O(4)–V–N(1) 173.0(2), O(4)–V–N(2) 89.6(2), N(1)–V–N(2) 85.2(2).

Fig. 2 Cyclic voltammogram of $[V^{IV}(tben)] \cdot CH_2Cl_2$ in dmf (0.1 mol dm⁻³ [Bu₄N][PF₆] supporting electrolyte, platinum working electrode, ferrocene internal standard, scan rate 400 mV s⁻¹) (SCE = standard calomel electrode)

Controlled potential coulometric measurements on 2 at 0.4 V vs., Fc⁺/Fc revealed that this species is oxidized by $1.00 \pm$ 0.05 electons per vanadium centre. The CVs of this solution and 2 are identical under the same conditions, and the starting material can be regenerated with reelectrolysis at 0.0 V vs. Fc+/Fc. The deep-blue oxidized species is stable for at least 48 h, and its electronic spectra consists of two very intense bands at λ_{max}/nm ($\epsilon/dm^3 mol^{-1} cm^{-1}$): 678 (15000) and 318 (14000). This spectrum is similar to that reported for the $[V^{V}L]^{2+}$ ion complex,9 but red shifted by 40 nm, consistent with the presence of four $O_{phenolate}$ donors in 2. The coulometric reduction of 2 at -1.2 V vs. Fc⁺/Fc confirms the result obtained from CV studies, indicating that this is also a one-electron-transfer process, involving the [V¹¹¹(tben)]⁻ complex. A more detailed characterization of the [VIII-(tben)]- and [VV(tben)]+ 'bare' complexes, as well as the structural and electrochemical characterization of two new

 VO^{2+} and VO^{3+} derivatives with tben⁴⁻, are in progress and will be published elsewhere.

This work was supported by Grants from CNPq and PADCT (Ministério da Ciência e Tecnologia of Brazil), and KFA (Kern Forschungs Anlage), Germany.

Received, 17th January 1992; Com. 2/00292B

References

- H. Vilter, *Phytochemistry*, 1984, 23, 1387; H. Plat, B. E. Krenn and R. Wever, *Biochem. J.*, 1987, 248, 277; E. de Boer, K. Boon and R. Wever, *Biochemistry*, 1988, 27, 1629; J. M. Arber, E. de Boer, C. D. Garner, S. S. Hasnain and R. Wever, *Biochemistry*, 1989, 28, 7968; E. de Boer, Y. van Kooyk, M. G. M. Tromp, H. Plat and R. Wever, *Biochim. Biophys. Acta*, 1986, 869, 48.
- 2 R. L. Robson, R. R. Eady, T. H. Richardson, R. W. Miller, M. Hawkins and J. R. Postgate, *Nature (London)*, 1986, **322**, 388; B. J. Hales, E. E. Case, J. E. Morningstar, M. F. Dzeda and L. A. Mauterrer, *Biochemistry*, 1986, **25**, 7251.
- 3 W. R. Harris and C. J. Carrano, J. Inorg. Biochem., 1984, 22, 201.

- 4 E. Bayer, E. Koch and G. Anderegg, Angew. Chem., 1987, 99, 570; Angew. Chem., Int. Ed. Engl., 1987, 26, 545; M. A. A. F. de C. T. Carrondo, M. T. L. S. Duarte, J. C. Pessoa, J. A. L. Silva, J. J. R. F. da Silva, M. C. T. A. Vaz and L. F. Vilas-Boas, J. Chem. Soc., Chem. Commun., 1988, 1158.
- 5 M. J. Smith, D. Kim, B. Horenstein, K. Nakanishi and K. Kustin, Acc. Chem. Res., 1991, 24, 117.
- 6 J. A. Bonadies and C. J. Carrano, J. Am. Chem. Soc., 1986, 108, 4088; J. A. Bonadies, W. M. Butler, V. L. Pecoraro and C. J. Carrano, *Inorg. Chem.*, 1987, 26, 1218; M. Mazzanti, S. Gambarotta, C. Floriani, A. Chiesi-Villa and C. Guastini, *Inorg. Chem.*, 1986, 25, 2308.
- 7 A. A. Diamantis, M. R. Snow and J. A. Vanzo, J. Chem. Soc., Chem. Commun., 1976, 264; P. Comba, L. M. Engelhardt, J. M. Harrowfield, G. A. Lawrance, L. L. Martin, A. M. Sargeson and A. H. White, J. Chem. Soc., Chem. Commun., 1985, 174.
- 8 S. R. Cooper, Y. B. Koh and K. N. Raymond, J. Am. Chem. Soc., 1982, 104, 5092.
- 9 U. Auerbach, B. S. P. C. Della Vedova, K. Wieghardt, B. Nuber and J. Weiss, J. Chem. Soc., Chem. Commun., 1990, 1004.
- 10 A. Neves, A. S. Ceccato, S. M. D. Erthal, I. Vencato, B. Nuber and J. Weiss, *Inorg. Chim. Acta*, 1991, 187, 119.
- 11 A. Neves, S. M. D. Erthal, I. Vencato, A. S. Ceccato, Y. P. Mascarenhas and M. Hörner, *Inorg. Chem.*, submitted for publication.
- 12 K. D. Karlin, B. I. Cohen, J. C. Hayes, A. Farooq and J. Zubieta, *Inorg. Chem.*, 1987, 26, 147.