Activation of Terminal Alkynes with *cis*-[RuCl₂(Ph₂PCH₂PPh₂)₂]: New Vinylidene– and Acetylide–Ruthenium Complexes and Crystal structures of $[(Ph_2PCH_2PPh_2)_2(CI)Ru=C=CH_2]PF_6$ and $[(Ph_2PCH_2PPh_2)_2(CI)RuC=CH]$ Complexes

Pierre Haquette, * Nadine Pirio, * Daniel Touchard, * Loïc Toupet^b and Pierre H. Dixneuf*

^a Laboratoire de Chimie de Coordination Organique, URA CNRS 415 and ^b Laboratoire de Physique Cristalline, URA CNRS 804, Campus de Beaulieu, Université de Rennes, 35042 Rennes, France

The activation of alkynes HC=CR with *cis*-[RuCl₂(Ph₂PCH₂PPh₂)₂] **1** leads to vinylidenes *trans*-[(Ph₂PCH₂PPh₂)₂(Cl)Ru⁺=C=CHR], even directly from acetylene itself (R = H) or prop-2-ynyl alcohol, from which the Ru⁺=C=CH(CH₂OH) moiety is resistant to dehydration, and deprotonation with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) directly affords *trans*-[(Ph₂PCH₂PPh₂)₂(Cl)Ru–C=C–R] derivatives.

Vinylidene metal complexes have recently found increasing interest resulting from the activation of terminal alkynes with 16-electron metal species and as a preliminary step for the synthesis of metal carbene derivatives.¹ Ruthenium(II) complexes, especially $[Ru(PR_3)_2(C_5H_5)]^+$ moieties, have played

an important role for the study of tautomerism of $[Ru(\eta^2-HC \equiv CR)]$ complexes and the stabilisation of $[Ru(\eta^1-C=CHR)]$ derivatives,^{1,2} whereas the electrophilic $[RuCl_2(PR_3)(arene)]$ derivatives give very reactive vinylidene intermediate precursors of carbene.³ We now report (*i*) that *cis*-

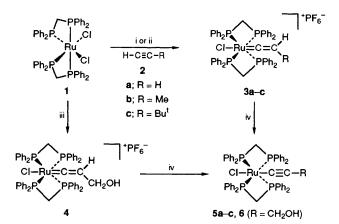
[RuCl₂(Ph₂PCH₂PPh₂)₂] 1 readily activates terminal alkynes to produce new vinylidene ruthenium complexes 3 but its behaviour contrasts with both Ru(C₅H₅) and Ru(C₆R₆) precursors as it allows the straightforward access, directly from acetylene, to the stable [(dppm)₂(Cl)Ru=C=CH₂]⁺ cation **3a** (92%) [dppm = bis(diphenylphosphino)methane] and gives evidence for the formation of the [Ru=C=CH-CH₂OH]⁺ moiety as the first step in the activation of prop-2-ynyl alcohol, (*ii*) the most efficient route to acetylideruthenium(1) complexes from alkynes *via* deprotonation of vinylidenes and (*iii*) the X-ray structural determination of related complexes containing the Ru⁺=C=CH₂ and Ru–C=CH moieties.

The reaction of 1 with an excess of acetylene dissolved in dichloromethane, without a halide abstracting reagent but with NaPF₆ at room temperature, leads to the formation of the orange *trans*-chloro vinylidene salt **3a** (92%).[†] Analogously, propyne and *tert*-butylacetylene are activated by complex 1 to give the orange vinylidene complexes **3b** (97%) and **3c** (84%),[†] respectively (Scheme 1). These compounds show in the IR an absorption at ~1650 cm⁻¹ [v_{C=C}] and in ¹³C NMR a low field quintuplet for the C=Ru carbon nucleus due to the coupling with four equivalent *cis* ³¹P nuclei (**3a**: δ 340.8, ²*J*_{P,C} 13.1 Hz) and a high field *C*=C=Ru signal [**3a**: δ 91.4 (t, quint.), ³*J*_{P,C} 1.9 Hz, ¹*J*_{C,H} 165.6 Hz].

It is noteworthy that **3a** is rapidly formed directly from acetylene itself, whereas the $[(C_5H_5)(R_3P)_2Ru^+=C=CH_2]$ intermediates were conveniently obtained from HC=C-SiMe₃ and methanol,^{2a,b} or via protonation of corresponding acetylide.^{2c} **3a** is also very stable toward addition of methanol in contrast to the Ru(C₅H₅)² or Ru(C₆R₆)³ derivatives, probably because of the protection of the Ru=C= carbon by both the electron-rich [Ru(dppm)₂Cl] moiety and the steric hindrance of four phenyl groups (Fig. 1). The exceptional stability of **3a**

3b: IR v/cm⁻¹ (KBr) 1658s (C=C); ${}^{31}P{}^{1}H$ NMR (121.50 MHz, CD₂Cl₂) δ -15.08 (s, Ph₂P); ${}^{1}H$ NMR (300.13 MHz, CD₂Cl₂) δ 2.57 (q, quint, =CH, $J_{H,H}$ 7.6, $J_{P,H}$ 2.8 Hz), 0.49 (d quint, =CMe, $J_{P,H}$ 0.8 Hz); ${}^{13}C{}^{1}H$ NMR (75.47 MHz, CD₂Cl₂) δ 321.1 (quint, Ru=C, ${}^{2}J_{P,C}$ 13 Hz), 100.5 (br s, Ru=C=C).

3c: IR ν/cm^{-1} (KBr) 1644s (C=C); ³¹P {¹H} NMR (121.50 MHz, CD₂Cl₂) δ -15.01 (s, Ph₂P); ¹H NMR (300.13 MHz, CD₂Cl₂) δ 1.79 (quint, =CH, $J_{P,H}$ 2.2 Hz); 0.11 (s, Bu^t); ¹³C{¹H} NMR (75.47 MHz, CD₂Cl₂) δ 324.6 (quint, Ru=C, ² $J_{P,C}$ 13 Hz), 117.6 (quint, Ru=C=C, ³ $J_{P,C}$ 3.3 Hz).


4: IR v/cm⁻¹ (KBr) 1658s (C=C); ${}^{31}P{}^{1}H$ NMR (121.50 MHz, CD₂Cl₂) δ -15.24 (s, Ph₂P), -143.4 (sept, PF₆⁻); ${}^{1}H$ NMR (300.13 MHz, CD₂Cl₂) δ 3.02 (m, =CH), 2.81 (d, CH₂OH, ${}^{3}J_{H,H}$ 8.2 Hz) 0.4 (br s, OH); ${}^{13}C{}^{1}H$ NMR (75.47 MHz, CD₂Cl₂) δ 351.4 (quint, Ru=C, ${}^{2}J_{P,C}$ 13.5 Hz), 107.3 (quint, Ru=C=C, ${}^{3}J_{P,C}$ 2.1 Hz).

 $\begin{aligned} & \text{Ru}=\text{C}, \, {}^{2}J_{\text{P,C}} \, 13.5 \, \text{Hz}), \, 107.3 \, (\text{quint}, \, \text{Ru}=\text{C}=\text{C}, \, {}^{3}J_{\text{P,C}} \, 2.1 \, \text{Hz}), \\ & \textbf{5a: IR v/cm^{-1} (KBr) 3289 (≡CH), 1935s (C≡C); \, {}^{31}\text{P}^{1}\text{H} \} \, \text{NMR} \\ & (121.50 \, \text{MHz}, \, \text{CD}_2\text{Cl}_2) \, \delta \, -5.4 \, (\text{s}, \, \text{Ph}_2\text{P}); \, {}^{1}\text{H} \, \text{NMR} \, (300.13 \, \text{MHz}, \\ & \text{CD}_2\text{Cl}_2) \, \delta \, 0.88 \, (\text{quint}, \, ≡CH, \, {}^{4}J_{\text{P,H}} \, 1.7 \, \text{Hz}); \, {}^{13}\text{C} \, {}^{1}\text{H} \} \, \text{NMR} \, (75.47 \, \text{MHz}, \, \text{CD}_2\text{Cl}_2) \, \delta \, 112.0 \, (\text{quint}, \, \text{Ru}-\text{C}, \, {}^{2}J_{\text{P,C}} \, 15.2 \, \text{Hz}), \, 97.4 \, (\text{quint}, \, \text{Ru}-\text{C}≡C, \, {}^{3}J_{\text{P,C}} \, 2 \, \text{Hz}). \end{aligned}$

5b: IR $\sqrt{\text{cm}^{-1}}$ (KBr) 2107s (C=C); ³¹P{¹H} NMR (121.50 MHz, CD₂Cl₂) δ -5.63 (s, Ph₂P); ¹H NMR (300.13 MHz, CD₂Cl₂) δ 1.04 (quint, Me, ⁵J_{P,H} 1.7 Hz); ¹³C {¹H} NMR (75.47 MHz, CD₂Cl₂) δ 96.7 (quint, Ru-C, ²J_{P,C} 15.8 Hz), 103.5 (quint, Ru-C=C, ³J_{P,C} 1.2 Hz).

(quint, Ru–C, ${}^{2J}_{P,C}$ 15.8 Hz), 103.5 (quint, Ru–C \equiv C, ${}^{3J}_{P,C}$ 1.2 Hz), **5c**: IR v/cm⁻¹ (KBr) 2087s (C \equiv C); ${}^{31}P{}^{1}H$ NMR (121.50 MHz, CD₂Cl₂) δ – 5.53 (s, Ph₂P); ${}^{1}H$ NMR (300.13 MHz, CD₂Cl₂) δ 0.31 (s, Bu¹); ${}^{13}C{}^{1}H$ NMR (75.47 MHz, CD₂Cl₂) δ 91.9 (quint, Ru–C, ${}^{2J}_{P,C}$ 15.7 Hz), 118.4 (quint, Ru–C \equiv C, ${}^{3J}_{P,C}$ 1.8 Hz).

CD₂Cl₂) $\delta = 5.35$ (s, Ph₂P); ¹H NMR (300.13 MHz, CD₂Cl₂) $\delta = 0.31$ (s, Bu¹); ¹³C{¹H} NMR (75.47 MHz, CD₂Cl₂) $\delta = 91.9$ (quint, Ru–C, ²*J*_{P,C} 15.7 Hz), 118.4 (quint, Ru–C=*C*, ³*J*_{P,C} 1.8 Hz). **6**: IR v/cm⁻¹ (KBr) 2094s (C=*C*); ³¹P{¹H} NMR (121.50 MHz, CD₂Cl₂) $\delta = 5.75$ (s, Ph₂P); ¹H NMR (300.13 MHz, CD₂Cl₂) $\delta = 3.42$ (m, CH₂), -0.44 (t, OH, *J*_{H,H} 5.2 Hz; ¹³C{¹H} NMR (75.47 MHz, CD₂Cl₂) $\delta = 113.4$ (quint, Ru–C, ²*J*_{P,C} 15.2 Hz), 108.6 (s, Ru–C=*C*).

Scheme 1 Reagents and conditions: i, 1 (0.5 mmol), NaPF₆ (2 equiv.) CH₂Cl₂ (50 ml) saturated with acetylene 2a at P = 1 atm, room temp. for 4 h; ii, 2b-2c (2 equiv.), CH₂Cl₂ (50 ml), NaPF₆ (2 equiv.), room temp., 4 h; iii, 1 (0.5 mmol), HC=CCH₂OH (1.1 mmol), NaPF₆ (1 mmol) in CH₂Cl₂ (60 ml) at room temp. for 4 h; iv, DBU (1 equiv.) in dichloromethane, room temp., 1 h

allowed its single crystal X-ray structural analysis.‡ The first structural characterization of a complex containing the M=C=CH₂ moiety has only just been reported for [Ru=C=CH₂(PMe₂Ph)₂(C₅H₅)]BF₄.^{2c} The ORTEP plot for **3a** (Fig. 1) shows the presence of the linear vinylidene group in a *trans* position to the chlorine atom. The most important fact is the very short bond distance C(3)–C(4) [1.22(1) Å] as compared with the C=C distance (1.20–1.21 Å) and with other ruthenium–vinylidene analogous C=C bond lengths, 1.313(10) Å for [Ru(PMe₃)₂(C₅H₅)(C=CHMe)]PF₆,⁴ 1.25(1) Å for [Ru(prophos)(C₅H₅)(C=CHMe)]PF₆⁵ and 1.287(13) Å for [Ru=C=CH₂(PMe₂Ph)₂(C₅H₅)]BF₄;^{2c} [prophos = (*R*)-1,2-bis-(diphenylphosphino)propane]. This observation is consistent with a partial sp character of the C-4 carbon, according to its ¹³C NMR shift (δ 91.7).

The activation of prop-2-ynyl alcohol derivatives is of special interest as it was observed to lead to the dehydration of the HC=CCR₂OH unit on coordination to ruthenium(II)^{1c,6} and then give addition of 1 or 2 moles of alcohol to produce carbenes.⁷ Complex 1 reacts with HC=CCH₂OH to give the stable light-brown complex 4 (76%)[†] which surprisingly appears to be resistant to dehydration. This evidence for the HC=C hydrogen 1,2-shift, which was previously observed only with the Mn(CO)₂(C₅H₅) derivative,^{1b} strongly supports that such a shift is the initial step leading to dehydration into allenylidene ruthenium intermediates.^{6,7}

The short $(RuC_2H_2)C=C$ bond length of **3a** and the chemical shifts of =CHR groups suggested that complexes **3** were strongly acidic. Actually, complexes **3a–c** can be deprotonated either with NaBH₄ in tetrahydrofuran or by treatment with

[†] Satisfactory elemental analyses were obtained for all derivatives.

Selected spectroscopic data for **3a**: IR v/cm⁻¹ (KBr) 1627s (C=C); ³¹P{¹H} NMR (121.50 MHz, CD₂Cl₂) δ -15.17 (s, Ph₂P), -143.9 (sept, PF₆-); ¹H NMR (300.134 MHz, CD₂Cl₂) δ 2.36 (quint, =CH₂, ⁴J_{P,H} 3 Hz).

[‡] Crystal data: C₅₂H₄₆ClP₄Ru, PF₆ **3a**: $M_r = 1076.318$, orthorhombic, Pna2₁, a = 22.603(3), b = 11.850(2), c = 19.235(6) Å, V = 5152(2)Å³, Z = 4, $D_x = 1.39$ Mg m⁻³, λ (Mo-K α) = 0.71069 Å, $\mu = 6.15$ cm⁻¹, F(000) = 2192, T = 293 K, final R = 0.037 for 3129 observations. The sample (prism 0.15 × 0.23 × 0.32 mm) was studied on an automatic diffractometer CAD4 Enraf-Nonius with graphite monochromatized Mo-K α radiation. The cell parameters were obtained by fitting a set of 25 high- θ reflections. The data collection [$2\theta_{max} = 50^\circ$, scan $\omega/2\theta = 1$, $t_{max} = 60$ s, range *hkl:* h 0.15, k 0.24, l 0.28, intensity controls without appreciable decay (0.1%)] gives 6214 reflections from which 4293 with $I > \sigma^3(I)$.

After Lorenz and polarization corrections, the structure was solved with a Patterson map which revealed the Ru atom. After isotopic refinement (R = 0.09), the whole structure was refined by full-matrix least-square techniques with the resulting R = 0.039, $R_w = 0.037$ and $S_w = 2.27$.

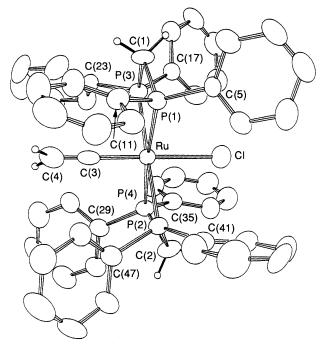


Fig. 1 Molecular structure of cation $[(Ph_2PCH_2PPh_2)_2ClRu=C=CH_2]^+$ 3a (ORTEP view). For clarity, hydrogen atoms are omitted. Selected bond distances (Å) and angles (°): Ru–Cl 2.415(2), Ru–P(1) 2.363(2), Ru–P(2) 2.378(2), Ru–P(3) 2.374(2), Ru–P(4) 2.388(2), Ru–C(3) 1.882(8), C(3)–C(4) 1.22(1); Cl–Ru–C(3) 178.8(3), Ru–C(3)–C(4) 178.4(2), P(1)–Ru–C(3) 91.0(3).

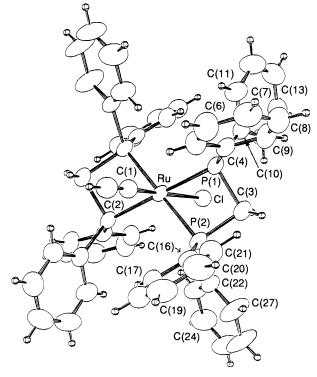


Fig. 2 Molecular structure of $[(Ph_2PCH_2PPh_2)_2ClRu-C=CH]$ 5a (ORTEP view). For clarity, hydrogen atoms are omitted. Selected bond distances (Å) and angles (°): Ru-Cl 2.628(2), Ru-P(1) 2.354(1), Ru-P(2) 2.318(1), Ru-C(1) 1.906(9), C(1)-C(2) 1.162(9); Cl-Ru-C(1) 178.2(2), Ru-C(1)-C(2) 177.0(6).

KOCMe₃ in CH₂Cl₂, however the best results were obtained by reaction of **3a-c** with DBU (1 equiv.) in dichloromethane which gave the yellow *trans*-chloro acetylide complexes **5a** (47%), **5b** (64%) and **5c** (65%).[†] These compounds show a 165

C=C absorption in their IR spectra (1935 cm⁻¹ for **5a**) and in ¹³C NMR two quintuplets for the -C=C-Ru carbon nuclei (**5a**: C-Ru: δ 112, ${}^{2}J_{P,C}$ 15.2 Hz and $C=C-Ru: \delta$ 97.1, ${}^{3}J_{P,C}$ 2 Hz). This simple two step $1 \rightarrow 3 \rightarrow 5$ transformation actually constitutes the best method to selectively produce monoacetylide ruthenium(II) derivatives, for lithium and Grignard reagents, or terminal alkyne and amine, to give low yields of mono- and di-acetylides from 1. Vinylidene 4 with DBU (1 equiv.) leads to the formation of the hydroxymethylacetylide 6 (45%)† which could not be obtained *via* classical methods.

A single crystal X-ray structural analysis was carried out on complex **5a**§ (Fig. 2). It allows a direct comparison with that of **3a** and shows the *trans* effect of the acetylide ligand on the Ru–Cl bond [2.628(2) Å] which is much longer than that in **3a** [2.451(2) Å]. The most striking observation is related to the C(1)–C(2) bond length [1.162(9) Å] which is very short as compared with 1.199(2) Å observed for $[Ru(CO)_2(C=CH)_2(PEt_3)_2]$.⁸ It thus appears to be much shorter than the free C=C bond distance (1.20–1.21 Å).

The easy formation of functional vinylidene ruthenium complexes and their facile deprotonation offer a potential route to unsymmetrically disubstituted acetylide derivatives.

We thank the Ministère de la Recherche et de la Technologie (MRT) for the award of a thesis grant to N. P. and A. Daridor for helpful technical assistance.

Received, 27th July 1992; Com. 2/04024G

References

- (a) M. I. Bruce, Chem. Rev., 1991, 91, 197; (b) A. B. Antonova and A. A. Johansson, Russ. Chem. Rev., 1989, 58, 693; (c) S. G. Davies, J. P. McNally and A. J. Smallbridge, Adv. Organomet. Chem., 1990, 30, 1.
- 2 (a) R. M. Bullock, J. Chem. Soc., Chem. Commun., 1989, 165; (b)
 M. I. Bruce and G. A. Koutsantonis, Aust. J. Chem., 1991, 44, 207;
 (c) J. R. Lomprey and J. Selegue, J. Am. Chem. Soc., 1992, 114, 5518.
- 3 H. Le Bozec, K. Ouzzine and P. H. Dixneuf, Organometallics, 1991, 10, 2768; D. Devanne and P. H. Dixneuf, J. Organomet. Chem., 1990, 390, 371.
- 4 M. I. Bruce, F. S. Wong, B. W. Skelton and A. H. White, J. Chem. Soc., Dalton Trans., 1982, 2203.
- 5 G. Consiglio, F. Morandini, G. F. Ciani and A. Sironi, Organometallics, 1986, 5, 1976.
- 6 J. P. Selegue, Organometallics, 1982, 1, 217.
- 7 D. Pilette, K. Ouzzine, H. Le Bozec, P. H. Dixneuf, C. E. F. Rickard and W. R. Roper, *Organometallics*, 1992, 11, 809.
- 8 Y. Sun, N. J. Taylor and A. J. Carty, J. Organomet. Chem., 1992, 423, C43.

§ Crystal data: C₅₂H₄₅ClP₄Ru **5a**: $M_r = 930.36$, monoclinic, $I 2/_a$, a = 22.003(2), b = 9.715(1) c = 22.2025(3) Å, $\beta = 112.38(2)^\circ$, V = 4389.0(6) Å³, Z = 4, $D_x = 1.408$ Mg m⁻³, λ (Mo-Kα) = 0.71069 Å, $\mu = 5.90$ cm⁻¹, F(000) = 1912, T = 293 K, final R = 0.024 for 2267 observations. The sample (prism $0.22 \times 0.22 \times 0.24$ mm) was studied on an automatic diffractometer CAD4 Enraf-Nonius with graphite monochromatized Mo-Kα radiation. The cell parameters are obtained by fitting a set of 25 high-θ reflections. The data collection $[2\theta_{max} = 50^\circ$, scan $\omega/2\theta = 1$, $t_{max} = 60$ s, range hkl: h 0.25, k 0.12, I = 26.26, intensity controls without appreciable decay (0.4%)] gives 4281 reflections from which 2267 independent ($R_{int} = 0.011$) with $I > \sigma^3(I)$.

After Lorenz and polarization corrections, the structure was solved with direct methods which revealed all the non-hydrogen atoms of the structure except the two acetylenic carbon atoms. These were found after a scale factor refinement and on Fourier difference. The whole structure was refined by the full-matrix least-square techniques with the resulting R = 0.027, $R_w = 0.024$ and $S_w = 1.135$.

For both structures the atomic scattering factors were from international tables for X-ray crystallography (1974). All the calculations were performed on a Digital Micro VAX 3100 computer with the Mo1EN package (Enraf-Nonius, 1990). Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.