Control of Helix–Helix Association induced by Alkali Metal lons in α -Helical Polypeptide having a Terminal Crown Ether

Norihiko Minoura

Department of Organic Materials, National Institute of Materials and Chemical Research, Agency of Industrial Science and Technology, MITI, Higashi, Tsukuba, Ibaraki 305, Japan

Head-to-head type interconnection of an α -helical polypeptide **1** having a terminal benzo-15-crown-5 is regulated by sodium or potassium ions.

Monomer and/or subunit association of proteins is a basic event in the regulation of biological activities. For example, the changes in the helix-helix association state of membrane proteins such as gramicidin,¹ alamethicin,² and melittin³ induced by external stimuli are known to be correlated with their ion-channel character. In artificial molecular systems, photoregulation of association or dissociation of molecular species has recently been achieved with modified cyclodextrin.⁴ However, helix-helix association of α -helical polypeptides induced by alkali metal ions has not been reported.

Crown ethers form metal ion complexes,⁵ e.g. benzo-15crown-5 forms a 1:1 (crown: Na⁺) complex with a Na⁺ ion.⁶ The same crown ether forms a 2:1 (crown: K⁺ complex) with the larger K⁺ ion (a sandwich-type structure).⁶ In this study, we attempted to use such complexes as connectors of helix-rods. The ion-binding behaviour of the crown ethers attached to polypeptides was similar to that of the small molecule analogue. Interconversion between the helix monomer and the helix dimer of α -helical polypeptide with a terminal crown ether can be regulated by addition of Na⁺ or K⁺ ions. Fig. 1 shows the association state of helix rods schematically. K⁺ ions couple two helix-rods head-to-head, while associated Na⁺ ions prevent coupling.

Poly(γ -benzyl-L-glutamate) **1** having a benzo-15-crown-5 at the end of the main chain was prepared by using aminobenzo-15-crown-5 as the initiator and the polymerization technique⁷ of γ -benzyl-L-glutamate N-carboxy anhydride. The ratio of the γ -benzyl-L-glutamate-NCA to the initiator was 50. The polymerization reaction was carried out in dioxane at room temperature.

The structure of the polypeptide 1 was confirmed by comparing the FTIR spectra of this product with those of the analogous poly(γ -benzyl-L-glutamate) and benzo-15-crown-5. The circular dichroism (CD) spectrum of the polypeptide 1 in 1,2-dichloroethane solution showed a minimum at 222 nm, suggesting the existence of α -helical structure.⁸

The molecular mass of the polypeptide 1 was measured by two methods. The number-average molecular mass M_n of the polypeptide 1 measured by vapour-pressure osmometry (type 117, Corona Co. Ltd, Japan) was $(2.48 \pm 0.17) \times 10^4$. In this measurement benzene was used as the solvent. The viscosityaverage molecular mass M_v , obtained from a dichloroacetic acid solution of the polypeptide 1, was $(3.31 \pm 0.19) \times 10^4$, from eqn. (1),⁹ where [η] is intrinsic viscosity. However, this

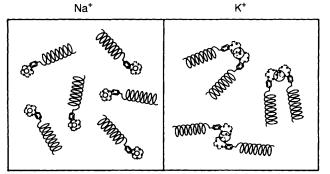


Fig. 1 Schematic representation of the association state of helix rods

equation is for poly(γ -benzyl-L-glutamate). In this case, the polypeptide 1 has a bulky terminal crown ether that may influence the result. Nevertheless, agreement between the two techniques for estimating the molecular mass was fair. (When M_v/M_n is unity, $M_n = M_v$; for these polymers, $M_v/M_n < 1.1$.)

To introduce the metal ions, solid picrates were added to a 1,2-dichloroethane solution of the polypeptide (4 mg 5 ml⁻¹) in a slight excess of their solubility limit. After filtration, the concentration of the picrate in the 1,2-dichloroethane was determined spectrophotometrically ($\lambda_{max} = 359$ nm in Na⁺ complex, $\lambda_{max} = 374$ nm in K⁺ complex). Mol ratios of the dissolved sodium and potassium picrates to the polypeptide 1 were 1.30 ± 0.13 and 0.60 ± 0.06, respectively, when the number-average molecular mass of the polypeptide 1 was used for the calculation. When the viscosity-average molecular mass was used, the mol ratios were 1.73 ± 0.17 and 0.80 ± 0.08, respectively. Thus, Na⁺ ions formed a complex with the polypeptide 1 according to a 1:1 stoichiometry and K⁺ ions formed a sandwich-type 2:1 complex (2.2 ± 0.4) within the experimental error.

If two helix-rods are coupled by K^+ ion, the apparent molecular mass should increase. A 1,2-dichloroethane solu-

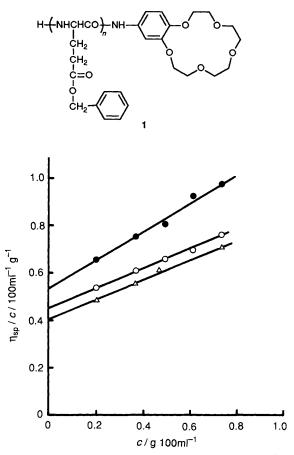


Fig. 2 Concentration dependence of specific viscosity; \bullet : K⁺ complex, \bigcirc : Na⁺ complex, \triangle : polypeptide without ions

tion, containing the complexes, was analysed with a Toso TSKgel column (type G4000HxL) for gel permeation chromatographic analysis (GPC) with a spectrophotometric detector (UV-8010, Toso Co Ltd, Japan). The column was calibrated using 1,2-dichloroethane solutions of different molecular mass of polystyrene. Since the column was calibrated with a polymer of dramatically different chemical nature and structure, results from GPC can only be compared qualitatively. (The polypeptide 1 in 1,2-dichloroethane is rod-shaped, whereas the polystyrene is spherical.) The ratios of the apparent molecular masses of K+ complex and Na+ complex to the apparent molecular mass of the polypeptide 1 without ions were estimated to be 1.16 ± 0.03 and 1.01 ± 0.03 , respectively, and the ratios of weight-average molecular mass to number-average molecular mass (M_w/M_n) of K⁺ complex, Na⁺ complex, and the polypeptide 1 without ions were 1.05, 1.06 and 1.05, respectively. Although the apparent molecular mass of the K⁺ complex was significantly larger (16%) than that of the polypeptide 1 without ions, the difference was not as large as the expected. The reason for this result is unclear. The linked polypeptides are probably not all straight and may have a distribution of effective lengths.

The viscosity measurements gave similar results. Fig. 2 shows the concentration dependence of specific viscosity measured at 25 °C by using Ubbelohde-type viscometer. At a given concentration, the viscosity of the 1,2-dichloroethane solution of K⁺ complex was higher than that of Na⁺ complex.

The alkali metal cations complexing with the crown ether

part of the polypeptide 1 can be exchanged. When an excess amount of potasium picrate was added to a 1,2-dichloroethane solution of the Na⁺ complex, the specific viscosity increased. Inversely, when an excess amount of sodium picrate was added to a 1,2-dichloroethane solution of the K+ complex, the specific viscosity decreased. The formation of the helix-helix associates was reversible.

The author wishes to thank Dr T. Kinoshita of Nagoya Institute of Technology for stimulating discussions.

Received, 1st September 1992; 2/04674A

References

- 1 D. W. Urry, T. L. Trapane and K. U. Prasad, Science, 1983, 221, 1064.
- 2 R. O. Fox, Jr and F. M. Richards, Nature, 1982, 300, 325.
- 3 H. Vogel and F. Jahnig, Biophys. J., 1986, 50, 573.
- 4 M. Fukushima, T. Osa and A. Ueno, J. Chem. Soc., Chem. Commun., 1991, 15.
- 5 C. J. Pedersen, J. Am. Chem. Soc., 1967, 89, 7017; 1970, 92, 386.
- 6 N. S. Poonia, J. Am. Chem. Soc., 1974, 96, 1012.
- 7 E. R. Blout, in Polyamino Acids, Polypeptides, and Proteins, ed. M. A. Stahmann, University of Wisconsin Press, Madison, 1962, p. 3. 8 S. Beychok, in Poly- α -Amino Acids, ed. G. D. Fasman, Marcel
- Dekker, New York 1967, p. 293.
- 9 P. Doty, J. H. Bradbury and A. M. Holtzer, J. Am. Chem. Soc., 1956, 78, 947.