New Unexpected Coordination Mode of Azide acting as a Bridging Ligand between Nickel(μ) lons. Synthesis, Crystal Structure and Magnetic Properties of [Ni(N₃)₂(2,2-dimethylpropane-1,3-diamine)]_n, and Infinite Bidimensional Polymer

Montserrat Monfort, # Joan Ribas* # and Xavier Solans^b

Departament de Química Inorgànica, Universitat de Barcelona, Diagonal, 647, 08028-Barcelona, Spain
Departament de Cristal.lografia, Universitat de Barcelona, Martí i Frangués, s/n, 08028-Barcelona, Spain

The reaction between aqueous solutions of Ni(ClO₄)₂, NaN₃ and 2,2-dimethylpropane-1,3-diamine (dmpd) gives blue crystals of the title compound which presents the N₃⁻ in a new coordination mode (end-to-end with respect to two Ni^{II} and end-on to another Ni^{II}), the crystal structure of which reveals a new infinite bidimensional sheet with anomalous magnetic behaviour at low temperature.

 N_3^- is a versatile ligand which can coordinate two metal ions in two different ways: end-to-end and end-on, both possibilities being structurally well characterized for nickel(11)¹⁻⁵ and copper(11)⁶⁻⁹ cations. There is a remarkable difference in the magnetic behaviour of the two coordination modes: in the first case the coupling is always antiferromagnetic, whereas the second is always ferromagnetic.⁶ Kahn and coworkers¹⁰ have studied exhaustively the interaction between copper(11) ions through the azide bridge from a theoretical point of view (even with *ab initio* calculations on model systems), emphasising the role of spin polarization in the magnetic exchange process, which can explain this behaviour.

In contrast with the abundant number of Cu^{II} complexes studied, there were relatively few similar Ni^{II} complexes which were only dinuclear. For this reason we have undertaken the synthesis and characterization of new polynuclear systems with Ni^{II} and azido bridge. With this aim, we have recently reported the first 1D nickel-azido complex,¹¹ in which double and single azido bridges alternate in the chain; on the other hand, we have also reported the first antiferromagnetic Ni^{II} chains with end-to-end azido bridges.^{12,13} Here we report the synthesis, crystal structure and preliminary magnetic properties of the first 2D polynuclear Ni^{II} complex, in which the bridging azido groups have a new and unexpected coordination mode. To an aqueous solution of Ni(ClO₄)₂ (1.89 g, 1 mmol) and dmpd (0.51 g, 1 mmol), an aqueous solution of NaN₃ (0.65 g,

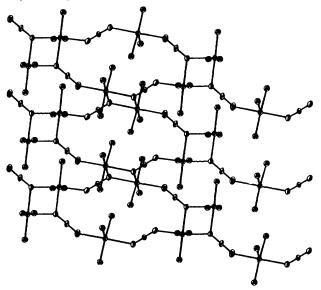


Fig. 1 View of the one layer in $[Ni(N_3)_2(dmpd)]_n$

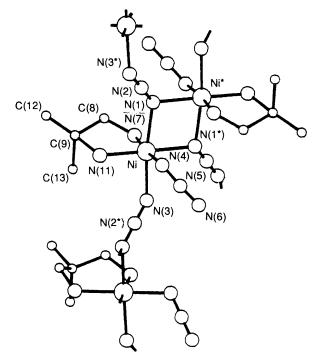
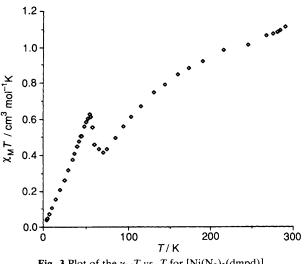



Fig. 2 The chemical unit of $[Ni(N_3)_2(dmpd)]_n$. Selected bond distances (Å) and angles (°): Ni–N(1) 2.177(4), Ni–N(1*) 2.209(4), Ni–N(3) 2.188(5), Ni–N(4) 2.062(5), Ni–N(7) 2.053(5), Ni–N(11) 2.052(5), N(2)-N(1) 1.181(6), N(2)-N(3*) 1.154(6), N(5)-N(4) 1.191(7), N(6)-N(5) 1.165(7); N(1)-Ni-N(1*) 81.9(2), Ni-N(1)-Ni* 98.1(4), Ni-N(1)-N(2) 124.2(4), Ni-N(3)-N(2*) 138.8(4)

2 mmol) was added with constant stirring. The solution was left undisturbed for several days and good blue crystals were collected, filtered and washed with cold water. X-Ray crystallographic analysis of this material revealed an infinite $2D [Ni(N_3)_2(dmpd)]$ neutral framework.

This infinite layer is represented in Fig. 1. In this sheet each Ni^{II} is octahedrally coordinated by the two nitrogen atoms of the amine ligand, one N₃⁻ terminal ligand and three other bridging N₃⁻ shared by three Ni^{II}, giving a total stoichiometry of $[Ni(N_3)(N_3)_{3/3}(dmpd)]$. As can be seen in Fig. 2, each bridging azido ligand coordinates two Ni^{II} ions in an end-on mode but, at the same time, this same azido ligand coordinates the neighbouring Ni^{II} ion in an end-to-end mode. Consequently, in each layer there are $Ni_2(N_3)_2$ units linked together by the bridging azides. Four of these units create a type of

† Crystal data for $[Ni(N_3)_2(dmpd)]$: C₅H₁₄N₈Ni. $M_r = 244.93$, monoclinic, space group $P2_1/c$, a = 12.649(3), b = 7.031(2), c = 12.114(3), $\beta = 112.39(2)^\circ$, V = 996.1(8) Å³, $D_c = 1.633$ mg mm⁻³, Z = 4, F(000) = 512.0, λ Mo-K $\alpha = 0.71069$ Å, μ (Mo-K α) = 19.21 cm⁻¹, T = 298 K. Crystal dimensions: $0.1 \times 0.1 \times 0.2$ mm. Philips PW-1100 diffractometer. Unit cell parameters were determined from automatic centring of 25 reflections (8 < θ < 12°) and refined by least-squares method. Intensities were collected with graphite monochromatized Mo-K α radiation using the ω -scan technique. 1533 reflections were measured in the range $2 < \theta < 25$. 1352 of which were assumed as observed applying the condition $I > 2.5\sigma(I)$. Lorentzpolarization but not absorption corrections were made. The structure was solved by Patterson synthesis, using SHELXS computer program and refined by full-matrix least-squares method, with the SHELX76 computer program. The function minimized was $\Sigma \le ||F_{c}||^{2}$, where w = $[\sigma^2(F_o) + 0.057|F_o|^2]^{-1}$. f, f' and f' were taken from international tables of X-ray crystallography. The position of all hydrogen atoms was located from a difference synthesis and refined with an overall isotropic temperature factor R = 0.059 ($R_w = 0.059$). Number of defined parameters was 170. Max. shift/esd = 0.1. Max. and min. peaks in final difference synthesis was 0.4 and -0.4 e Å⁻⁻ respectively. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

Fig. 3 Plot of the $\chi_M T$ vs. T for $[Ni(N_3)_2(dmpd)]_n$

metallomacrocycle which is repeated throughout the layer (Fig. 1). This is the first time this type of coordination has been reported in Ni^{II} complexes which opens a new approach in magneto-structural correlations, since, according to the Kahn theory,¹⁰ there are two Ni^{II} ions coupled in a ferromagnetic way (end-on N_3^-) and two pairs of Ni^{II} ions coupled in antiferromagnetic way (end-to-end N₃⁻).

Preliminary, but repetitive, susceptibility measurements are anomalous (Fig. 3) because from room temperature down to 60 K there is a clear decrease in $\chi_M T$ values, indicating strong antiferromagnetic coupling, but at ca. 60 K there is an abrupt change from 0.4 to 0.6 cm³ mol⁻¹ K which may indicate a rearrangement in the layers giving a long-order cooperative (canting) phenomenon.¹⁴ Further studies are necessary to clarify this unexpected behaviour.

We acknowledge financial support from CICYT, grant PB90/0029.

Received, 23rd October 1992; Com. 2/05659C

References

- 1 M. I. Arriortua, A. R. Cortés, L. Lezama, T. Rojo and X. Solans, Inorg. Chim. Acta, 1990, 174, 263.
- 2 A. Escuer, R. Vicente and J. Ribas, J. Magn. Magn. Mat., 1992, 110. 181.
- 3 F. Wagner, M. T. Mocella, M. J. D'Aniello, A. H. J. Wang and E. K. Barefield, J. Am. Chem. Soc., 1974, 96, 2625
- 4 C. G. Pierpont, D. N. Hendrickson, D. M. Duggan, F. Wagner and E. K. Barefield, Inorg. Chem., 1975, 14, 604
- 5 P. Chaudhuri, M. Guttmann, D. Ventur, K. Wieghardt, B. Nuber and J. J. Weiss, J. Chem. Soc., Chem. Commun., 1985, 1618.
- 6 S. Sikorav, I. Bkouche-Waksman and O. Kahn, Inorg. Chem., 1984, 23, 490 and references cited therein.
- 7 P. Chaudhuri, K. Oder, K. Wieghardt, B. Nuber and J. Weiss, Inorg. Chem., 1986, 25, 2818.
- J. Commarmond, P. Plumeré, J. M. Lehn, Y. Agnus, R. Louis, R. Weiss, O. Kahn and I. Morgersten-Badarau, J. Am. Chem. Soc., 1982, 104, 6330
- 9 O. Kahn, S. Sikorav, J. Gouteron, S. Jeannin and Y. Jeannin, Inorg. Chem., 1983, 22, 2877
- 10 M. F. Charlot, O. Kahn, M. Chaillet and C. Larrieu, J. Am. Chem. Soc., 1986, 108, 2574 and references cited therein.
- 11 R. Vicente, A. Escuer, J. Ribas and X. Solans, *Inorg. Chem.*, 1992, **31**, 1726.
- 12 A. Escuer, R. Vicente, J. Ribas, M. Salah el Fallah and X. Solans, Inorg. Chem., in the press.
- 13 V. Gadet, M. Verdaguer, J. P. Renard, J. Ribas, M. Monfort, C. Diaz, X. Solans, C. P. Landee, J. P. Jamet and A. Dworkin, I. Am. Chem. Soc., in the press.
- 14 R. L. Carlin, Magnetochemistry, Springer-Verlag, Berlin, 1986, pp. 148 and 206.