465

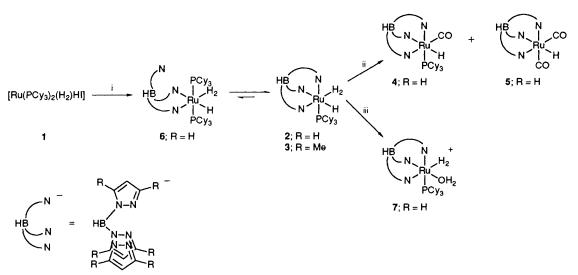
Tris-pyrazolyl-borate Dihydrogen Complexes of Ruthenium[†]

Malcolm A. Halcrow^a Bruno Chaudret^{*}^a and Swiatoslaw Trofimenko^b

 ^a Laboratoire de Chimie de Coordination du CNRS, U.P. 8241 liée par conventions à l'Université Paul Sabatier et à l'Institut National Polytechnique, 205 route de Narbonne, 31077 Toulouse Cedex, France
^b DuPont Polymers, Research and Development, Experimental Station, Wilmington, Delaware 19880-0302, USA

Reaction of $[Ru(PCy_3)_2(H_2)HI]$ with K(tpb) or TI(tdmpb) affords the molecular hydrogen complexes $[Ru(\eta^3-L)(PCy_3)(H_2)H]$ (L = tpb or tdmpb), *via* the intermediates *trans*- $[Ru(\eta^2-L)(PCy_3)_2(H_2)H]$; protonation of $[Ru(tpb)(PCy_3)(H_2)H]$ with HBF₄·Et₂O leads to the cationic aquo-dihydrogen complex $[Ru(tpb)(PCy_3)(OH_2)(H_2)]BF_4$.

In contrast to the large number of well characterised polyhydride and dihydrogen complexes containing cyclopentadienyl (Cp) and/or phosphine ligands,¹ and despite the well known binding capabilities of tris-(pyrazolyl)borate ligands,² very few polyhydrides supported by tpb or other N-donor ligands have been reported.3 The rhenium complexes $[Re(tpb)H_6]$ and $[Re(tpb)(PPh_3)H_4]$ were shown to be classical polyhydrides in solution, 3a as is the corresponding $[Re(C_5Me_5)H_6]$,⁴ while in contrast the rhodium species [Rh(tpb)H₄] was proposed to adopt the non-classical structure $[Rh(tpb)(H_2)H_2]$ on the basis of T_1 measurements.^{3b} We have previously prepared and studied the chemistry of [Ru- $(C_5Me_5)(PCy_3)H_3]$,⁵ an unusual compound showing quantum mechanical exchange coupling between the hydride ligands by NMR spectroscopy, which we recently proposed to arise from the existence of two interconvertible trihydride and hydridodihydrogen isomers.6 We were therefore interested to examine the spectroscopic properties and reactivity that tris-(pyrazolyl)borato-ruthenium polyhydrides might show. We report herein the syntheses and properties of the complexes $[Ru(tpb)(PCy_3)H_3]$ and $[Ru(tdmpb)(PCy_3)H_3]$, and the reactivity of the former complex towards ligand substitution and protonation.


Reaction of $[Ru(PCy_3)_2(H_2)HI]^7$ 1 with 1 equiv. of K(tpb) in THF under H₂ at 293 K for 30 min affords a green solution,

from which an air-sensitive oily tan product **2** can be isolated in *ca*. 40% yield following chromatography of the crude mixture over alumina in toluene. The IR spectrum of **2** exhibits peaks due to tpb and PCy₃ ligands, together with a broad v(Ru–H) vibration at 2017 cm⁻¹, while ¹H NMR spectroscopy shows, in addition to broad peaks from the tpb and PCy₃ ligands, a doublet resonance integrating to 3H at δ -10.4 (*J* 18 Hz) that broadens considerably below 240 K. A series of T_1 determinations for the high-field resonance at varying temperatures yielded a minimum of 16 ms at 245 K (250 MHz). This is similar to the values obtained for other *cis*-hydride–dihydrogen complexes of Ru,^{7.8} and is consistent with the formulation of **2** as the octahedral Ru^{II} species [Ru(tpb)(PCy₃)(H₂)H].¹*c*⁺ Desorption chemical ionisation (DCI) mass spectrometry of **2** (NH₃ carrier gas) showed

[†] Abbreviations used: Cy = cyclohexyl; tpb = trispyrazol-1-ylborate; tdmpb = tris-(3,5-dimethylpyrazol-1-yl)borate; THF = tetrahydrofuran.

[‡] Spectroscopic data for **2**: IR (Nujol): v(B–H) 2459m cm⁻¹, v(Ru–H) 2017br cm⁻¹; ¹H NMR (C_6D_6 , 200 MHz): δ 7.99 (br, 3H), 7.65 (br, 3H), 6.11 (br, 3H), 1-2 (m, 33H) and -10.44 (d, J 18 Hz, 3H); ³¹P{¹H} NMR ($C_6D_6-C_6H_6$): δ 74.23 (s). T_1 values for the high-field ¹H signal (250 MHz): 296 K, 54 ms; 253 K, 19; 233 K, 20; 213 K, 38; 183 K, 124. Estimated T_1 minimum 16 ms at 245 K.

Spectroscopic data for 3: IR (Nujol): v(B–H) 2521m cm⁻¹, v(Ru–H) 2029br cm⁻¹; ¹H NMR (C₆D₆, 200 MHz): δ 5.93 (s, 2H), 5.31 (s, 1H), 2.60 (s, 6H), 2.54 (s, 6H), 2.38 (s, 3H), 2.14 (s, 3H), 1–2 (m, 33H) and -10.71 (d, J 18 Hz, 3H); ³¹P{¹H} NMR (C₆D₆-C₆H₆): δ 93.50 (s), T_1 values for the high-field ¹H signal (250 MHz): 298 K, 63 ms; 233 K, 25; 218 K, 22; 203 K, 33; 183 K, 86. Estimated T_1 minimum 21 ms at 220 K.

Scheme 1 Reagents and conditions: i, K(tpb), THF, H₂, 293 K (yield 40%) or Tl(tdmpb), THF, H₂, 343 K (yield 4%); ii, CO, THF, 293 K (yield 3%); iii, HBF₄·Et₂O, pentane, 293 K (yield 70%)

approximately equal-intensity peaks at m/z 595 and 593, corresponding to M – 3H and M – 5H respectively. These could arise from the expected M + H molecular ion (m/z 599, presumably protonated at the terminal hydride ligand, *vide infra*) via loss of both resultant H₂ ligands, followed by dehydrogenation of a PCy₃ cyclohexyl group. Such a dehydrogenation reaction has been observed on protonation of [Ru(C₅Me₅)(PCy₃)H₃].^{5b}§

No reaction is observed between 1 and Tl(tdmpb) at 293 K; however, treatment of 1 with Tl(tdmpb) in THF under H₂ at 323 K and purification as above gives a very low but reproducible yield (4%) of complex 3. The spectroscopic properties of 3 are very similar to those of 2, *viz. m/z* 679 (M – 3H) and 677 (M – 5H), v(Ru–H) 2029 cm⁻¹, δ (Ru–H) –10.7 (d, *J* 18 Hz, 3H), *T*₁ (min) 21 ms at 220 K,‡ and 3 was therefore formulated as the non-classical hydride [Ru(tdmpb)(PCy₃)-(H₂)H]. The high-field resonance of 3 develops low- and high-frequency shoulders between 233 and 183 K, which may be indicative of partial decoalescence into separate peaks for the hydride and dihydrogen ligands.

The non-classical formulation of 2 and 3 contrasts with the analogous complexes $[Ru(C_5R_5)(PR'_3)H_3]$ (R = H, R' = Ph; R = Me, R' = Ph, Pr^i , Cy), which are classical Ru^{IV} trihydrides in the solid state and display exchange couplings in solution,^{5,9} particularly since tpb ligands are often considered as analogues of Cp in their complex chemistry. It is noteworthy that EHMO calculations have implied that tpb is a significantly better donor ligand than Cp,¹⁰ which is not consistent with the dihydrogen-hydride structures of 2 and 3; the observation of non-classical structures for hydride complexes is generally associated with relatively electron-poor metal centres.^{1b,d} However, in these systems, Cp^* (C_5Me_5) appears to be a better electron donor ligand as deduced from the observation of a CO at 1900 cm⁻¹ for $[Ru(C_5Me_5) (PCy_3)(CO)H$ ⁵ and 1915 cm⁻¹ for $[Ru(tpb)(PCy_3)(CO)H]$ (vide infra). Furthermore, the strong electronic and steric preference of complexes containing tpb ligands for octahedral coordination is well known,10 which could preclude the formation of seven-coordinate trihydride structures for 2 and 3.

Both 2 and 3 are indefinitely stable toward H_2 loss under Ar or *in vacuo*, while no reaction is observed between 2 and N_2 , CO₂ or excess of MeCN at 293 K. Treatment of 2 with CO in THF at 293 K for 1 h produces a very low yield (<5%) of a 1 : 1

mixture of $[Ru(tpb)(PCy_3)(CO)H]$ 4 and a dicarbonyl hydride 5 that we propose to be $[Ru(tpb)(CO)_2H]$ [IR (hexane): v(C-O) 2039, 1971 cm⁻¹; ¹H NMR (C₆D₆): δ -9.5 (s)], the remainder of 2 being recovered unchanged. Complex 4 was prepared independently in low yield by reaction of [RuHCl-(CO)(PCy_3)_2]^{11} with K(tpb).¶

Freshly prepared samples of 2 were occasionally observed to contain an additional product 6, characterised by six resonances from the tpb ligand (1:2:1:2:1:2 integral ratios)and a triplet hydride resonance at δ -11.9 (J 15 Hz), by ¹H NMR spectroscopy in C₆D₆, and an AB multiplet in the ³¹P NMR spectrum centred at δ 51.4 (J 290 Hz). A 3 : 1 mixture of 2 and 6 can also be generated by dissolution of 2 in the presence of a tenfold excess of PCy₃. A T₁ measurement at 293 K on the hydride resonances of a mixed sample of 2 and 6 afforded an identical value of 56 ms for both species (*cf.* 54 ms for pure 2), implying that 2 and 6 are in equilibrium under these conditions. These data are consistent with the formulation of *trans*-[Ru(η^2 -tpb)(PCy₃)₂(H₂)H] for 6, this being the structure of the putative intermediate in the formation of 2 from 1 (Scheme 1).

The protonation of **2** with 1 mol. equiv. of HBF₄·Et₂O in pentane at 223 K leads to the precipitation of a highly air-sensitive off-white solid product **7**. The ¹H NMR spectrum of **7** in C₆D₆ at 293 K exhibits a broad hydride resonance at δ -7.24 ($w_{1/2}$ 50 Hz, 2H; T_1 11 ms at 253 K) and a broad singlet at δ 3.43 ($w_{1/2}$ 18 Hz, 2H), together with nine peaks from the tpb pyrazolyl protons and a series of multiplets from a PCy₃ ligand; no ¹H resonances assignable to a protonated pyrazole moiety are observed, while ¹³C NMR spectroscopy rules out

An M - 5 ion was also observed in the DCI (NH₃) mass spectrum of [Ru(C₅Me₅)(PCy₃)H₃]. M. A. Halcrow and B. Chaudret, unpublished result.

[¶] Spectroscopic data for 4: IR (Nujol): v(B-H) 2482m cm⁻¹, v(Ru-H) 1950m cm⁻¹, v(C-O) 1915s cm⁻¹; IR (hexane): v(C-O) 1928 cm⁻¹; ¹H NMR (C₆D₆, 200 MHz): δ 8.14 (d, J 2 Hz, 1H), 7.93 (d, J 2 Hz, 1H), 7.86 (d, J 2 Hz, 1H), 7.69 (d, J 2 Hz, 1H), 7.59 (d, J 2 Hz, 1H), 7.48 (d, J 2 Hz, 1H), 6.17 (t, J 2 Hz, 1H), 6.00 (t, J 2 Hz, 1H), 5.90 (t, J 2 Hz, 1H), 1–2 (m, 33H) and –12.74 (d, J 27 Hz, 1H); ³¹P{¹H} NMR (C₆D₆-C₆H₆): δ 65.16 (s).

Spectroscopic data for 7: IR (Nujol): v(O–H) 3408br cm⁻¹, v(B–H) 2493m cm⁻¹, v(B–F) 1060br cm⁻¹; ¹H NMR (C₆H₆, 200 MHz): δ 8.88 (d, J 2 Hz, 1H), 8.10 (d, J 2 Hz, 1H), 7.61 (d, J 2 Hz, 1H), 7.58 (d, J 2 Hz, 1H), 7.47 (d, J 2 Hz, 1 H), 6.76 (d, J 2 Hz, 1H), 6.16 (t, J 2 Hz, 1H), 6.00 (t, J 2 Hz, 1H), 5.72 (t, J 2 Hz, 1H), 3.43 (br, 2H), 1–2 (m, 33H) and -7.24 (br, 2H); ¹³C{¹H} NMR (C₆D₆): δ 147.89 (1C), 142.74 (1C), 138.10 (1C), 135.12 (2C), 132.18 (1C), 107.14 (br, 3C), 29.84 (6C), 28.30 (s, 6C) and 25.77 (3C); ³¹P{¹H} NMR (C₆D₆-C₆H₆): δ 38.98 (s); *T*₁ values for the high-field ¹H signal (200 MHz): 294 K, 14 ms; 253 K, 11.

an agostic C–H interaction from or dehydrogenation of, a phosphine cyclohexyl group.^{5b} IR spectroscopy (Nujol) shows broad v(O–H) and δ (H–O–H) absorptions at 3408 and 1634 cm⁻¹ respectively but no terminal v(Ru–H) vibration. We therefore formulate 7 as the cationic molecular hydrogen complex [Ru(tpb)(PCy₃)(H₂)(OH₂)]BF₄.¶

Protonation of 2 probably occurs at the terminal hydride ligand, which would afford a highly reactive bis-dihydrogen species $[Ru(tpb)(PCy_3)(H_2)_2]^+$. The subsequent substitution of a dihydrogen ligand by an aquo ligand would afford 7; such adventitious water probably derives from the acid used, since freshly distilled solvents were employed throughout this study. It is noteworthy that treatment of 2 in situ with HBF₄·Et₂O or CF₃SO₃H in CD₂Cl₂ or C₇D₈ also affords 7, with observable evolution of H_2 ; in this case, weaker ¹H resonances at δ -4 to -12 with T_1 values of 10-20 ms at 294 K are also observed, with corresponding ³¹P singlet resonances at δ 33-46 (cf. δ 39.0 for 7). These additional peaks may arise from other species of type $[Ru(tpb)(PCy_3)(H_2)(L)]^{n+}$ (L = coordinated solvent, anion etc.). It is remarkable that only one H₂ ligand is substituted under these conditions; the fine balance between H₂ and OH₂ binding at a metal centre has been noted previously.¹² Complex 7 readily loses H₂ on mild heating, in vacuo or in coordinating solvents such as acetone.

In conclusion, we have prepared the first ruthenium polyhydrides containing tpb ligands, and shown that these complexes have very different spectroscopic properties from their C_5Me_5 analogues. Furthermore, whereas protonation of $[Ru(C_5Me_5)(PCy_3)H_3]$ leads to extensive hydrogen evolution and dehydrogenation of the phosphine ligand,^{5b} the protonation of $[Ru(tpb)(PCy_3)(H_2)H]$ allows the isolation of a cationic molecular hydrogen complex. This presumably reflects the increased electron richness of the $[Ru(tpb)]^+$ centre over $[Ru(C_5Me_5)]^+$, allowing improved back-donation into the H–H σ^* -orbital and hence stabilising the protonated product.

The authors thank the CNRS for support and Johnson-Matthey plc for a loan of $RuCl_3 \cdot 3H_2O$. We also acknowledge the Royal Society (London) and CNRS for an exchange

fellowship for M. A. H. We thank F. Lacassin, S. Sabo-Etienne and B. Brumas for NMR spectra.

Received, 21st December 1992; Com. 2/06770F

References

- (a) G. J. Kubas, Acc. Chem. Res., 1988, 21, 120; (b) R. H. Crabtree and D. G. Hamilton, Adv. Organomet. Chem., 1988, 28, 299; (c) R. H. Crabtree, Acc. Chem. Res., 1990, 23, 95; (d) P. G. Jessop and R. H. Morris, Coord. Chem. Rev., 1992, 121, 155.
- 2 (a) S. Trofimenko, Acc. Chem. Res., 1971, **4**, 17; (b) S. Trofimenko, Prog. Inorg. Chem., 1986, **34**, 115.
- 3 (a) D. G. Hamilton, X-L. Luo and R. H. Crabtree, *Inorg. Chem.*, 1989, 28, 3198; (b) U. E. Bucher, T. Lengweiler, D. Nanz, W. von Philipsborn and L. M. Venanzi, *Angew. Chem.*, 1989, 102, 573; *Angew. Chem., Int. Ed. Engl.*, 1989, 29, 548; (c) W. D. Harman and H. Taube, *J. Am. Chem. Soc.*, 1990, 112, 2261; (d) Z-W. Li and H. Taube, *J. Am. Chem. Soc.*, 1991, 113, 8946.
- 4 W. A. Herrmann and J. Okuda, Angew. Chem., 1986, 98, 1109; Angew. Chem., Int. Ed. Engl., 1986, 25, 1092.
- 5 (a) T. Arliguie, C. Border, B. Chaudret, J. Devillers and R. Poilblanc, Organometallics, 1989, 8, 1308; (b) T. Arliguie, B. Chaudret, F. A. Jalon, A. Otero, J. A. Lopez and F. J. Lahoz, Organometallics, 1991, 10, 1888.
- 6 H-H. Limbach, G. Scherer, M. Maurer and B. Chaudret, Angew. Chem., 1992, 104, 1414; Angew. Chem., Int. Ed. Engl., 1992, 31, 1369.
- 7 B. Chaudret, G. Chung, O. Eisenstein, S. A. Jackson, F. J. Lahoz and J. A. Lopez, J. Am. Chem. Soc., 1991, 113, 2314.
- 8 (a) T. Arliguie and B. Chaudret, J. Chem. Soc., Chem. Commun., 1989, 155; (b) G. Chung, T. Arliguie and B. Chaudret, New J. Chem., 1992, 16, 369.
- 9 (a) H. Suzuki, D. H. Lee, N. Oshima and Y. Moro-oka. Organometallics, 1987, 6, 1569; (b) D. M. Heinekey, N. G. Payne and C. D. Sofield, Organometallics, 1990, 9, 2643.
- 10 M. D. Curtis, K-B. Shiu, W. M. Butler and J. C. Huffman, J. Am. Chem. Soc., 1986, 108, 3335.
- 11 F. G. Moers and J. P. Langhoudt, Recl. Trav. Chim. Pays-Bas, 1972, 91, 591.
- 12 G. J. Kubas, C. J. Burns, G. R. K. Khalsa, L. S. Van der Sluys, G. Kiss and C. D. Hoff, *Organometallics*, 1992, 11, 3390.