Reversible Alkali-metal Reduction of C_{60} in Liquid Ammonia; First Observation of Near-infrared Spectrum of C_{60}^{5-} Wilfred K. Fullagar, Ian R. Gentle, Graham A. Heath and John W. White* Research School of Chemistry and Department of Chemistry, The Faculties, The Australian National University, GPO Box 4, Canberra ACT 2601, Australia A new method for the homogeneous redox manipulation of alkali-metal fullerides with a solution of rubidium in liquid ammonia at $-40\,^{\circ}$ C has been used to prepare the C_{60}^{2-} , C_{60}^{3-} , C_{60}^{4-} and C_{60}^{5-} ions, the near IR spectra being recorded at various stages of the titration; the excitation energy of the main band in C_{60}^{5-} (10 500 cm $^{-1}$) is close to that of C_{60}^{1-} and the principal band in the C_{60}^{2-} spectrum. The discovery of superconductivity in various alkali-metal-doped fullerides 1,2 has promoted intense study into the electronic properties of these materials. Up to six reversible reduction waves have been detected electrochemically, $^{3-8}$ while the characteristic near-IR spectra of the soluble anions C_{60}^{n} ($n=1,2,3,4)^{5,8-11}$ have been observed using optically transparent thin-layer electrosynthetic (OTTLE) techniques. This spectral information, in conjunction with calculations, provides information about the electronic structure of the anions of C_{60} , which is important for the understanding of the mechanism of superconductivity in fulleride salts. We report here the first observation of the near-IR absorption spectrum of the C_{60}^{5-} anion, produced by a novel solution-phase technique using rubidium in liquid ammonia, and monitored by near-IR spectroscopy. The method takes advantage of the newly-discovered solubility of alkali-metal fullerides in ammonia at low temperatures. A full description of apparatus which was constructed to enable the preparation of alkali-metal compounds of C₆₀ in liquid ammonia will appear in a subsequent publication. ¹² The glass vessel consists of three chambers, two of which are calibrated and contained respectively reagent solutions of **Fig. 1** The electronic spectrum in the near-IR of $C_{50}^{c_0}$, $C_{60}^{d_0}$, $C_{60}^{d_0}$ and $C_{60}^{c_0}$, at various stages of the titration of C_{60} with Rb-liquid ammonia at -40 °C. Bands below *ca.* 7000 cm⁻¹ are due to the liquid ammonia rubidium dissolved in liquid ammonia and finely-divided C₆₀ in suspension in liquid ammonia. Metered amounts of these solutions were progressively added to the third chamber, to which was appended a quartz cuvette for spectroscopic measurements. With this equipment, it was possible to 'titrate' aliquots of the rubidium-ammonia solution into the suspension of C₆₀ in ammonia and to observe successive reductions spectroscopically. Subsequent reversal to less-reduced states can be performed by further addition of C₆₀-ammonia. Spectroscopic monitoring was found to be more precise and informative than relying on stoichiometric addition (although this is also possible using the same apparatus). The three chambers are jacketed and may be maintained at a temperature as low as -60 °C by the circulation of methanol. A stream of chilled, dry nitrogen prevented boiling of the solvent in the cuvette and frosting of the windows. As a preparative technique, this arrangement has major advantages over electrochemical syntheses in that the volatile solvent is readily removed, and no workup is required to remove supporting electrolytes. A sample of Rb_3C_{60} prepared in this way has undergone preliminary testing by microwave susceptibility measurements and was found to exhibit superconductivity, although the exact T_c has not yet been determined. Spectra obtained for the 2-, 3-, 4- and 5- states are shown in Fig. 1, with peak wavenumbers, approximate absorptivities and comments listed in Table 1. The remarkable similarity of the spectra for C_{60}^2 C_{60}^3 and C_{60}^4 shown here to those previously observed using OTTLE techniques with dichloromethane, pyridine and benzonitrile as solvent, is evidence for the relative unimportance of both ion-pairing, where supporting electrolytes were employed, and solvent effects. To our knowledge, this is the first report of the spectrum of C_{60}^{5-} . Authentication of this spectrum was provided by several facts: the species could be observed to coexist with that of C_{60}^{4-} , and therefore, from the known reduction potentials, could not **Table 1** Major near-IR bands observed for C_{60}^{n-} (n = 1, 2, 3, 4, 5) in solution | Species | ν/cm ⁻¹ a | $v - v_0 / $ cm^{-1} | ε/dm ³
mol ⁻¹
cm ^{-1b} | Comments ^c | |-------------------------------|---|-------------------------------------|---|---| | All | 5000-7000 | | | Liquid ammonia bands | | C_{60}^{1-d} | 9 300
9 650
10 080
10 750
10 950 | 0
350
780
1450
1650 | —
—
—
— | $\begin{aligned} & FC \; \text{max} \; t_{1u}{}^{1} \rightarrow t_{1g}{}^{1} \\ & T_{2u}, \; G_{u} \\ & H_{u}, \; H_{g}, \; T_{2u} \\ & A_{g}, \; T_{1u}, \; G_{u}, \; H_{g} \\ & T_{2u}, \; H_{g}, \; H_{u} \end{aligned}$ | | C ₆₀ ²⁻ | (7 390)
10 600
10 900
11 350
12 300
(12 890) | 0
300
750
1700 | Weak
5600
Medium
Medium
2500
Medium | Probable 3 – peak FC max $t_{1u}^2 \rightarrow t_{1u}^1 t_{1g}^1$ Shoulder, G_u , H_g Shoulder, H_u , H_g , T_{2u} H_g , H_u /or FC max Shoulder, probable 3 – peak | | C ₆₀ | 7 370
8 780
10 150
11 550
13 000
14 400 | 0
1400
0
1400
0
1400 | 52 000
Weak
6300
4200
7400
3400 | $\begin{split} &FC \ max \ t_{1u}{}^3 \rightarrow t_{1u}{}^2 t_{1g}{}^1 \\ &A_u, T_{1u}, H_g \\ &FC \ max \\ &A_u, T_{1u}, H_g \\ &FC \ max \\ &A_u, T_{1u}, H_g \end{split}$ | | C ₆₀ | (7 370)
8 500
8 900
(10 200)
(11 600)
14 000
15 600 | 0
400
0
1600 | Weak
5500
Medium
3200
2600
6000
Medium | Probable 3 – peak
FC max $t_{1u}^4 \rightarrow t_{1u}^3 t_{1g}^1$
G_g, H_u, H_g
Probably 3 –
Probably 3 –
FC max
G_g, H_g | | C ₆₀ ⁵⁻ | (8 550)
10 500
11 250
12 100 | 0
750
1600 | Weak
7180
Weak
Weak | $\begin{aligned} & \text{Probable 4- peak} \\ & \text{FC max } t_{1u}{}^5 \! \rightarrow \! t_{1u}{}^4 t_{1g}{}^1 \\ & \text{Shoulder } T_{2u}, H_g, H_u \\ & \text{Shoulder } G_g, H_g \end{aligned}$ | ^a Precision of measured wavenumbers is estimated to be $\pm 30 \, \text{cm}^{-1}$ on the major peaks (designated as Frank-Condon maxima [FC_{max}]). Not listed here are the two peaks common to each spectrum and assigned to overtone and combination bands of liquid ammonia. They are, with probable assignments: $6085 \text{ cm}^{-1} \text{ (weak)}, v_2 + v_3 + v_4; 6535 \text{ cm}^{-1}, 2v_1$ (and $2v_3$, $v_1 + v_3$). Parentheses indicate peaks probably due to other species. b It was only possible to determine approximate values for molar absorptivities due to uncertainties in solvent volumes, however this will be overcome in future experiments of this type. $^{\rm c}$ Vibrational assignments were determined by accepting fundamental vibrations within \pm 50 cm⁻¹ of the measured frequency difference. Experimental data^{20,21} were used where available in preference to calculated values. d Values obtained in CHCl2 solution using OTTLE techniques from ref. 8. These are included to emphasise the similarities to the C_{60}^{2-} and C_{60}^{5-} spectra; solvent effects have been shown to be negligible. Experimental difficulties prevented the observation of the spectrum of the monoanion in liquid ammonia. be the 6– species; it was possible to recover the 4–, 3– and 2– species sequentially from the postulated 5– state by further addition of an appropriate aliquot of C_{60} –ammonia. Finally the spectrum was observed to be very similar to that of C_{60}^{1-} , as would be expected given the complementary nature of the t_{1u}^1 and t_{1u}^5 states. Further addition of Rb–ammonia to the 5– species resulted in an abrupt change in the near-IR region, with the disappearance of the C_{60}^{5-} spectrum, and the appearance of a broad absorption, characteristic of solvated electrons and typical of the spectra of alkali metals in ammonia. The C_{60}^5 spectrum was recoverable from this solution by comproportionation with addition of further C_{60} –ammonia. The existence of absorbances in the near-IR of the anions of C₆₀ can be predicted from MO diagrams¹⁴ which show that the HOMO and LUMO orbitals for the anions are the closely spaced, triply degenerate t_{1u} and t_{1g} orbitals respectively. Such simple diagrams account for the similarity of the C_{60}^{1-} and C_{60}^{2-} spectra if one assumes weak electron–electron interactions in C_{60}^{2-} but do not explain the multiple peaks observed for C_{60}^{3-} and C_{60}^{4-} . The features on the high-frequency side of the single major peaks of the spectra of C_{60}^{1-} and C_{60}^{3-} have provoked suggestions that the electronic state degeneracy is appreciably lifted by the Jahn–Teller effect. 10 It would appear, however, that in a molecule as large as C_{60} any such distortions would be small, and unlikely to cause splittings of the observed magnitude, except possibly in the case of C_{60}^{3-} ion, for which Jahn–Teller effects are at a maximum. 15 A possible explanation of or at least some of the extra peaks is vibrational structure. We note that this structure in the spectra of C_{60}^{1-} , C_{60}^{2-} and C_{60}^{5-} is similar though fine detail is limited for instrumental reasons. Some provisional vibrational assignments are given in Table 1 and it is, perhaps, of note that H_g fundamentals are involved in a number of the progressions. One immediately obvious point is that plausible assignments can be made using vibrations close in frequency to known of the excited state vibrational frequencies to C_{60} oxidation state mirrors what has been found for the ground state. One in the experiments at higher resolution are underway to elucidate the interpretation of this structure. The authors gratefully acknowledge the help of Mr Chris Tomkins for the skilful manufacture and assistance with the design of the titration apparatus, and Mr Denes Bogsanyi for technical assistance with the measurement of spectra. Received, 29th October 1992; Com. 2/05794H ## References 1 A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, D. W. Murphy, S. H. Glarum, T. T. M. Palstra, A. P. Ramirez and A. R. Kortan, *Nature*, 1991, **350**, 600. - 2 M. J. Rosseinsky, A. P. Ramirez, S. H. Glarum, D. W. Murphy, R. C. Haddon, A. F. Hebard, T. T. M. Palstra, A. R. Kortran, S. M. Zahurak and A. V. Makhija, *Phys. Rev. Lett.*, 1991, 66, 2830 - 3 R. E. Haufler, J. Conceicao, L. Chibante, Y. Chai, N. Byrne, S. Flanagan, M. Haley, S. O'Brien, C. Pan, Z. Xiao, W. Billips, M. Ciufolini, R. Hauge, J. Margrave, L. J. Wilson, R. Curl and R. Smalley, J. Phys. Chem., 1990, 94, 8634. - 4 P.-M. Allemand, A. Koch, F. Wudl, Y. Rubin, F. Diederich, M. Alvarez, S. Anzand and R. Whetten, J. Am. Chem. Soc., 1991, 113, 1050. - 5 D. Dubois, K. M. Kadish, S. Flanagan, R. E. Haufler, L. P. F. Chibante and L. J. Wilson, J. Am. Chem. Soc., 1991, 113, 4364. - 6 D. Dubois, K. M. Kadish, S. Flanagan and L. J. Wilson, J. Am. Chem. Soc., 1991, 113, 7773. - 7 Y. Ohsawa and T. Saji, J. Chem. Soc., Chem. Commun., 1992, - 8 G. A. Heath, J. E. McGrady and R. L. Martin, J. Chem. Soc., Chem. Commun., 1992, 1272. - 9 M. A. Greaney and S. M. Gorun, J. Phys. Chem., 1991, **95**, 7142. - 10 D. R. Lawson, D. L. Feldheim, C. A. Foss, P. K. Dorhout, C. M. Elliott, C. R. Martin and B. Parkinson, J. Electrochem. Soc., 1992, 139, L68. - 11 V. I. Srdanov, A. P. Saab, D. Margolese, E. Poolman, K. C. Khemani, A. Koch, F. Wudl, B. Kirtman and G. D. Stucky, Chem. Phys. Lett., 1992, 192, 243. - 12 W. K. Fullagar, I. R. Gentle, G. A. Heath and J. W. White, in preparation. - 13 W. L. Jolly, C. J. Hallada and M. Gold, in *Solutions Metal-Ammoniac*, ed. G. Lepoutre and M. J. Sienko, W. A. Benjamin, Inc, New York, 1964, p. 176. 14 See for example H. W. Kroto, A. W. Allaf and S. P. Balm, *Chem.* - 14 See for example H. W. Kroto, A. W. Allaf and S. P. Balm, Chem. Rev., 1991, 91, 1213 and references therein. - 15 C. M. Varma, J. Zaanen and K. Raghavachari, Science, 1991, 254, 989. - 16 D. E. Weeks and W. G. Harter, J. Chem. Phys., 1989, 90, 4744. - 17 G. Onida and G. Benedek, Europhys. Lett., in the press. - 18 C. Coulombeau, H. Jobic, P. Bernier, C. Fabre, D. Schutz and A. Rassat, J. Phys. Chem., 1992, 96, 22. - 19 K. Prassides, J. Tomkinson, C. Christides, M. J. Rosseinsky, D. W. Murphy and R. C. Haddon, *Nature*, 1991, 354, 462. - 20 J. W. White, G. Lindsell, L. Pang, A. Palmisano, D. S. Sivia and J. Tompkinson, *Chem. Phys. Lett.*, 1992, 191, 92. - 21 B. Chase and P. J. Fagan, J. Am. Chem. Soc., 1992, 114, 2252.