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Synthesis and Carbonylation of [Pd(Me)(OMe){ (S,S)-bdpp}l [(S,S)-bdpp = 
(2S,4S)-2,4-bis( diphenylphosphino)pentane] 
lmre Toth and Cornelis J. Elsevier 
Anorganisch Chemisch Laboratorium, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, 
The Netherlands 

Synthesis of [Pd(Me)(OMe){(S,S)-bdpp}] 2 by NaOMe metathesis with [Pd(Me)(Cl){(S,S)-bdpp}] 1 is reported along 
with the low temperature carbonylation of 2; the elimination of methyl acetate from the new carbonylation product 
[Pd(Me)(C02Me){ (S,S)-bdpp}] 3 proceeds readily even at -50 “C. 

Late-transition-metal alkoxides might play an important role preferably into the metal-alkoxy bond rather than into the 
as catalytic intermediates in a variety of homogeneous metal-alkyl bond to form alkyl(alkoxycarbony1)platinum or 
catalytic processes including hydroalkoxycarbonylation of palladium compounds, [ M( R) ( C02R’)L2]. cis- and trans- 
olefins and alkoxycarbonylation of alkyl or aryl halidesl. It has [Pt(R)(C02R’)L2] compounds2 and trans-[Pd(CHzPh)- 
been shown that alkylplatinumz or alkylpalladium alkoxides3 (C02Me) { (PMe3)2}]4 are reluctant to undergo reductive 
of the type of [M(R)(OR’)L2] [M = Pt, Pd; R, R’ = alkyl, L2 elimination, whereas cis-[Pd(Me)(CO2R’)(dppe)] [R’ = 
= bis(mono-tert-phosphine), di-tert-phosphine) insert CO CH(CF3)2, CH2CF3, CH(CF3)Ph; dppe = 1,2-bis(diphenyl- 
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phosphino)ethane] compounds readily eliminate the appro- 
priate ester derivatives,3 thus providing potential support for a 
methoxycarbonyl route5 in the methoxycarbonylation 
mechanism. In the absence of electronegative substituents on 
R and R'  groups in [Pd(R)(OR')L2] the Pd-OR' bond is 
highly polarized.6 A polarized metal-alkoxide bond M-OR' 
with P-hydrogens in the alkoxy group, such as M-OMe, is 
susceptible to (3-hydride elimination ,1-3,6 similarly to the 
metal-alkyl bond in [M(R)( OR')L2] when R contains 
P-hydrogens.7 Possibly, these are the reasons for the fact that 
(i) the number of known [Pd(R)(OR')L2] compounds (where 
R ,  R' = non-substituted alkyl or aryl) is quite limited and that 
(ii) an alkyl(methoxo)palladium compound, [Pd(R)(OMe)L2] 
(where R = non-substituted alkyl including Me, CH2Ph), has 
never been characterized. 

We report here the synthesis and carbonylation of the 
new methyl(methoxo)palladium compound [ Pd(Me)(OMe) 
{(S, S)-bdpp}] 2 as part of our investigations concerning the 
mechanism of asymmetric hydromethoxycarbonylation of 
styrene derivatives catalysed by chiral Pd-bdpp compounds8 
[bdpp = 2,4-bis(diphenylphosphino)pentane9]. The me thy1 
group as alkyl ligand in 2 was chosen for the reason that, 
although Me is electronically similar to the alkyl ligands 
formed by the insertion of styrene derivatives into a Pd-H 
bond,s it is not susceptible to P-hydride elimination. 

When [Pd(Me)(Cl){(S,S)-bdpp}]? 1 is treated with 1 equiv. 
of NaOMe in a mixture of dry solvents, MeOH-benzene 
(1 : l), at room temp., the methyl(methoxo) compound 2 is 
formed, but owing to the equilibrium in its formation, only in 
about 60% yield (Scheme 1). The halflife (tl12) of 2 in the 
reaction mixture is more than 12 h at room temperature. The 
conversion of 1 to 2 is almost quantitative in the presence of a 
tenfold excess of NaOMe; however the decomposition of 2 by 
P-hydride elimination is much faster (tlR ca. 1 h) than in the 
case above. Nevertheless, the new compound 2 can be isolated 
from the latter reaction mixture in ca. 95% purity by a quick 
work-up procedure.$ The methyl(methoxo) compound 2 can 
also be generated and prepared in ca. 95% purity by dissolving 
[Pd(Me)(OBut)[ {(S,S)-bdpp}] in dry MeOH.8 [Owing to the 
absence of P-hydrogens in the Pd-tert-butoxy moiety, the 

+ Compound 1 was prepared by the reaction of [Pd(Me)(Cl)(cod)] 
(cod = cyclooctadiene) and (S,S)-bdpp in benzene analogously to the 
procedure reported in ref. 10. Elemental analyses were satisfactory; 
31P NMR (CDC13, 295 K,  rel. 85% H3POJ): 6 39.5 (d), 6.6 (d); 2Jp.p, 
= 49 Hz. 

$ The reaction mixture was stirred for about 2-3 min and the 
orange-yellow solution was concentrated in vucuo. The residue was 
suspended in dry benzene containing 1% MeOH, stirred for several 
seconds and filtered rapidly. The solvents were quickly evaporated 
from the mother liquid in vacuo, yielding 2 as a beige crystalline solid. 
The purity of this material was about 95% as judged by NMR. Upon 
prolonged stirring the reaction mixture turned red gradually, indicat- 
ing some decomposition of 2, which can readily be followed by 31P 
NMR. Compound 2 decomposes in minutes when dissolved in pure 
solvents such as CH2CI2, tetrahydrofuran (THF) or benzene, resulting 
in the formation of unstable PdO and PdI compounds. Compound 2 
also decomposes in solid form when stored at room temperature (cu. 
5% decomposition in 10 h); thus an elemental analysis has not been 
attempted. Data for 2; 3lP NMR (CD30D, 295 K): 6 42.2 (d), 8.5 (d); 
2Jp,pr 45 Hz; IH NMR (CD30D, 295 K): 6 8.0-7.3 (m), (4Ph); 2.87 
(m), 2.70 (m), (2CH); 1.80 (m), (CH2); 1.07 (dd), 0.90 (dd); 3Jp,H 14.8 
Hz, 3 J ~ . ~  7.0 Hz, 3Jp,,H 10.8 Hz, 35H,H 7.0 HZ [2Me-(CH)]; 0.48 (dd), 
3JpfpdCH 7.5 Hz, 3 J p , p d ~ ~  3.5 Hz, [Me-(Pd)]; 13C NMR (CD30D, 295 
K): 6 135.9-128.6 (m), (4Ph); 35.5 (m), (CH2); 28.1 (dd); 25.3 (d), 
lJp,c 30.0 Hz, 3Jp,c 7.2 Hz, lJp,,c 18.5 Hz 3Jpt.c < 3 Hz not res., 
(2CH); 17.9 (br. s . ) ,  16.5 (br. s.) [2Me-(CH)]; 15.2 (d) 'Jp,pdC 95 Hz, 
'Jp,pdCH < 3 Hz not res. [Me-(Pd)]. Owing to the fast and complete 
exchange with the solvent alcohol, the methoxide signal could not be 
detected by lH and 13C NMR. Thus, when compound 2 was dissolved 
in CD30D, only the formation of one equivalent of CH30D could be 
observed. 
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Scheme 1 

1 1 I '  

1 , I  

f i ,  I /  

hw' bb* w 
220 215 21 0 

6 
Fig. 1 Part of the 13C NMR (75.5 MHz) spectrum of [Pd(Me)- 
(13C02Me){ (S,S)-bdpp}] 3 recorded after the carbonylation of 2 
under 3 bar Of 13C0 at -70 "C: 6 214.4, 2Jp,p,jc 165 Hz, 2Jp,pdc 12 HZ. 

methyl(tert-butoxy) compound is stable for a day in the 
presence of an excess of tert-butoxide]. 

The methyl(methoxo)palladium compound 2 reacts at 3 bar 
of C O  in CD30D-C6D5CD3 (1 : 1) at 80 "C to form the 
methyl(methoxycarbony1) compound, [Pd(Me)(CO*Me)- 
{ (S, S)-bdpp}] 3, exclusively (Scheme 1). The reaction rate for 
the conversion of 2 into 3 is first order in the concentration of 2 
under the conditions above (tl,2 = 50 min at -8O"C, t1/2 = 14.5 
min at -70 "C, as measured in a spinning 10 mm high-pressure 
NMR tube). The rate at which methanol exchange (2 S 2a, 
Scheme 1) takes place is much higher for 2 than for the 
analogous platinum compound [Pt(Me)(OMe)(dppe)] .7 In 
fact, the exchange of 2 with deuteriated methanol is im- 
measurably fast at -70 "C in a mixture of solvents identical to 
that used in the carbonylation experiment above. The 
observed relative stability of 2 in methanol compared to that in 
non-alcoholic media$ probably is a consequence of this fast 
exchange, which is much faster than P-hydride elimination 
from the Pd-OMe moiety. Furthermore, the exchange 2 2a 
is much faster than the carbonylation of 2 to give 3, whereas 
the opposite has been observed for the platinum analogue, for 
which an associative mechanism was proposed.7 In view of the 
present findings and the fact that Pd-OMe complexes will be 
partly dissociated in methanol, a dissociative mechanism for 
the formation of 3 via 4 seems plausible. 

The reductive elimination of MeC02Me from 3 (Scheme 1) 
is slow below -70 "C; hence 3 could be fully characterized by 
NMR spectroscopy.§ Fig. 1 shows a partial 13C NMR 
spectrum of the carbonyl region obtained by the low tempera- 
ture carbonylation of 2 under 3 bar of T O .  An intermediate 
to 3, such as compound 4 (Scheme l), could not be detected by 
NMR spectroscopy. At  -50 and -30°C the reductive 
elimination (Scheme 1) proceeds at considerable rates; tl12 = 

0 Compound 3, 31P NMR (CD30D-C6D5CD3, 1 : 1): 6 22.6 (d), 10.5 
(d); 2 J ~ , ~ ,  43 Hz. l3C NMR in carbonyl region is given in Fig. 1. 
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68 and 7 min, respectively. In the presence of CO the 
dicarbonyl compound 5 1  is formed stoichiometrically , conco- 
mitant with the elimination of MeCOzMe, upon which the 
colourless solution of 3 turns yellow gradually. 

The experiments above clearly demonstrate that it is 
possible to generate the methyl(methoxo)palladium com- 
pound 2 and that once it is formed it will insert C O  into the 
Pd-OMe bond. The methyl(methoxycarbony1) compound 3 
readily eliminates MeCOzMe, thus providing potential sup- 
port for a methoxycarbonyl route in the hydromethoxycar- 
bonylation mechanism. However, a detailed study8 on this 
mechanism shows that the formation of compounds like 2 
(thus a methoxycarbonyl route) is unlikely in the absence of 
added methoxide, such as under the reaction conditions of the 
catalytic process. 

The financial support of this work by DSM Research, 
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1 Compound 5 could not be isolated as it gradually loses C O  in the 
absence of C O  atmosphere. Nevertheless, it was well characterized in 
the reaction mixture (CD30D-C6DSCD3, 1 : 1); IR (295 K): vco/cm-' 
2015 s, and 1973 s, 31P NMR (295 K): 6 18.7 s, (183 K): 19.5 (br. s), 
14.0 (br. s). 

References 
1 H. E. Bryndza and W. Tam, Chem. Rev., 1988, 88, 1163, and 

references therein. 
2 M. A. Bennett, G. B. Robertson, P. 0. Whimp and T. Yoshida, 

J .  Am.  Chem. SOC. ,  1973, 95, 3028; M. A. Bennett and T. 
Yoshida, J .  Am.  Chem. SOC., 1978,100, 1750; R. A. Michelin, M. 
Napoli and R .  Ros, J .  Organomet. Chem., 1979, 175, 239; H. E .  
Bryndza, S .  A. Kretchmar and T. H. Tulip, J .  Chem. SOC., Chem. 
Commun., 1985, 977; H. E. Bryndza, Organometallics, 1985, 4, 
1686. 

3 Y. Kim, K. Osakada, K. Sugita, T. Yamamoto and A. Yamam- 
oto, Organometallics, 1988, 7, 2182; Y. Kim, K.  Osakada, A. 
Takenaka and A. Yamamoto, J .  Am.  Chem. SOC. ,  1990, 112, 
1096. 

4 D. Milstein, J .  Chem. Soc., Chem. Commun., 1986, 817. 
5 For recent studies and references see: D .  Milstein, Acc. Chem. 

Res., 1988, 21, 428; C. Cavinato and L. Toniolo, J .  Organomet. 
Chem., 1990, 398, 187. 

6 T. Yoshida, T. Okano and S. Otsuka, J .  Chem. SOC. ,  Dalton 
Trans., 1976, 993. 

7 H. E .  Bryndza, J. C .  Calabrese, M. Marsi, D .  C. Roe, W. Tam 
and J .  E. Bercaw, J .  Am.  Chem. S O C . ,  1986, 108, 4805. 

8 1. Toth and C. J. Elsevier, to be published. 
9 J .  Bakos, I .  Toth and L. Marko, J. Org. Chem., 1981, 46, 5427; 

P. A. MacNeil, N. K. Roberts and B.  Bosnich, J .  Am.  Chem. Soc., 
1981, 103, 2273; J. Bakos, I.  Toth, B. Heil and L. Marko, 
J .  Organomet. Chem., 1985, 279, 23. 

10 G. P. C. M. Dekker, C. J. Elsevier, K. Vrieze and P. W. N. M. van 
Leeuwen, Organometallics, 1992, 11, 1598. 




