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Electron-transfer-catalysed Carbonyl Substitution in [(Arene)Mn(CO)J+ Complexes 
Catherine C. Neto, Carl D. Baer, Young K. Chung and Dwight A. Sweigart" 
Department of Chemistry, Brown University, Providence, RI 02912, USA 

Electrochemical reduction of [(arene)Mn(C0)3]+ in the presence of tertiary phosphites or phosphines (L) produces 
[(arene)Mn(C0)2L]+ via electron-transfer catalysis; [(me~itylene)Re(CO)~]+ is reduced in a two-electron chemically 
reversible step and does not undergo ligand substitution. 

The reductive activation of organometallic complexes to 
ligand substitution has been demonstrated for a variety of 
polynuclear and several mononuclear complexes. 1-10 Herein 
we report that in the presence of some phosphorus nucleo- 
philes, [ (arene)Mn(C0)3]+ undergoes clean electrocatalytic 
CO substitution to afford [ (arene)Mn(CO)ZL] + . In sharp 
contrast to this behaviour, the rhenium analogues do not 
undergo ligand substitution upon reduction. 

The electrochemical reduction of [ (arene)Mn(C0)3] + 

(1+) in CH2C12 under N2 was found to be chemically 
irreversible at 20 "C and scan rates up to 20 V s-1 for a range 

(1c+), C6Me6 (Id+), C&t6 (le+), N-methylindole (If+) and 
benzofuran (lg+). Fig. 1 presents typical results. The cyclic 
voltammograms (CVs) for complexes la-d+ but not le-g+ 

Of arenes: c6H6 (la+), 1,3,5-C6H3Me3 ( lb+) ,  1,3,5-C6H3Et3 

have a reversible couple near 0 V that is due to a product of 
the primary reduction near - 1 V. IR-OTTLE (optically 
transparent thin-layer electrode) experiments with Id+ sug- 
gested that the reduction product is the dimer 
[ { (C6hk6)Mn(CO)2}2] 2d, which was originally discovered by 
Eyman et aZ.11 Proof that the reversible couple in the CVs is 
due to this type of dimer formation in the reduction of la-d+ 
was provided by the IR and CV characteristics of genuine 
samples of 2a-d. Under a CO atmosphere and/or at -4O"C, 
the formation of 2d from Id+ was inhibited and the primary 
reduction wave showed partial chemical reversibility, along 
with an increase in current from It = 1 to n = ca. 1.3. The 
reduction of l e g +  consumed one electron and did not lead to 
2; IR-OTTLE experiments showed the absence of 2 and 
suggested that the chemical irreversibility is due to radical 



J .  CHEM. SOC. ,  CHEM. COMMUN.,  1993 817 

0 -1 .o 
E l  V vs. Ag I AgCl 

Fig. 1 CVs of 1.0 mmol dm-3 [(arene)Mn(C0)3]PFb in CH2C12- 
0.10 mol dm-3 Bu4NPF6 at 293 K.  The arene is indicated above each 
CV. The working electrode was a 1.0 mm diameter platinum disk and 
the scan rate was 0.50 V s-1. All potentials are relative to ferrocene E+ 
= 0.52 V. 
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coupling through the arene rings to give cyclohexadienyl (Ch) 
complexes [ { (Ch)Mn(C0)3}2] 3 analogous to ones prepared 
via chemical reduction.12 The lack of any observable oxidation 
wave for 3 is expected based on observations with monomeric 
[(Ch)Mn(C0)3] complexes.13 

A plausible mechanism for the electrochemicai reduction of 
1+ is given in Scheme 1. The 19-electron [(are~ie)Mn(CO)~] 
can dissociate CO followed by dimerization to 2 or reduction 
to the known11J4 [(arene)Mn(CO)2]- anion, which is expec- 
tedll to react rapidly with the starting complex l+. Computer 
simulationl5J6 of this dissociative part of the mechanism 
quantitatively reproduced the CVs for la-d+ at 20°C under 
N2. Under CO or at low temperature the CO dissociation from 
1 is inhibited and direct dimerization to 3 or subsequent 
reduction to the q4-arene complex competes with the forma- 
tion of 2. It is known12J7 that chemical reduction of l+ under 
certain conditions can generate 3 or the q4-arene complex. 
Apparently, complexes le-g+ follow the reduction route 
directly to 3 without forming substantial amounts of 2 or 
q4-arene. 

0 -1.4 
E l  V vs. Ag I AgCl 

Fig. 2 CVs of 1.0 mmol dm-3 [(ben~ofuran)Mn(CO)~]BF~ in CH2C12- 
0.10 mol dm-3 Bu4NPFs at 293 K in the presence of ( A )  no 
nucleophile, ( B )  1.5 mmol dm-3 P(OBU)~ and (C) 3.0 mmol dm-3 
PPh3. The working electrode was a 1.0 mm diameter platinum disk 
and the scan rate was OSOV s-l .  All potentials are relative to 
ferrocene Et = 0.52 V. 

In the presence of tri-n-butyl phosphite, P(OBu)3, the 
reduction of 1+ led to efficient electrocatalytic CO substitu- 
tion to produce [(arene)Mn(CO),(P(OBu)3}]+ (4+). No 
reaction occurred on the time scale of the experiments unless a 
reducing potential was applied. All of the 1+ complexes 
reacted cleanly with P(OBu)3 in this manner except le+,  
which showed no reaction. The heterocyclic arene complexes 
If+ and lg+,  but not complexes la+-le+, also underwent CO 
substitution in the presence of low concentrations of PPh3. 
Fig. 2 shows typical CVs for lg+ and Scheme 2 gives the 
mechanism. As 1+ is reduced to 1, rapid CO substitution 
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Fig. 3 CVs of 1.0 mmol dm-3 [(mesitylene)Re(C0)3]PF6 in CH2C12- 
0.10 mol dm-3 Bu4NPF6. The working electrode was a 1.0 mm 
diameter glassy carbon disk and the scan rate was 0.50Vs-l. All 
potentials are relative to ferrocene Ei = 0.52 V. 

occurs to give 4, which is spontaneously oxidized either at the 
electrode to give 4+ or via reaction with 1+ to afford 4+ and 
regenerate 1. The process is catalytic because 4+ is reduced at 
a more negative potential than is 1+ (the more negative wave 
in Fig. 2). IR experiments showed that the overall conversion 
1+ + 4+ is quantitative. Typically, the passage of charge 
corresponding to 3% of the amount of 1+ present was 
sufficient to effect complete conversion to 4+ with P(OBu)3 as 
the nucleophile ([1+] = 1 mmol dm-3; [P(OBu)3] = 
1.5 mmol dm-3). CV data showed that the reactivity with 
P(OBu)3 depends on the arene in the order benzofuran 

The behaviour of [(mesitylene)Re(C0)3]+ 5+ is in marked 
contrast to that of manganese analogue, l b + .  CVs at a glassy 
carbon electrode (Fig. 3 )  suggested that the reduction occurs 
in a two-electron chemically reversible step; double potential 

> 1,3,5-C6H3Me3 > 173,5-C6H3Et3 >> C6Et6. 

step chronoamperometry and steady-state voltammetry with 
5 pm and 2 pm diameter platinum disk microelectrodes 
verified the chemical reversibility and that n = 2. The 
presence of CO, P (OBU)~  or PBu3 had no effect on the CVs. 
The large cathodic and anodic peak separations in Fig. 3 
indicate a slow heterogeneous charge transfer step. The most 
likely interpretation is that 5+ is reduced to 5, which 
undergoes a slow and spontaneous second reduction as the 
arene slips from q6 to q4. A variety of arene complexes, 
especially with heavier transition metals, show a similar type 
of behaviour.18 

The conclusion is that [ (arene)Mn( CO),] + complexes are 
activated to CO dissociation (substitution) upon one-electron 
reduction, whereas the rhenium analogues do not undergo CO 
dissociation, preferring instead arene ring slippage ('dissocia- 
tion') in conjunction with the (spontaneous) addition of a 
second electron to give the 18-electron y4-arene complex 5-. 
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