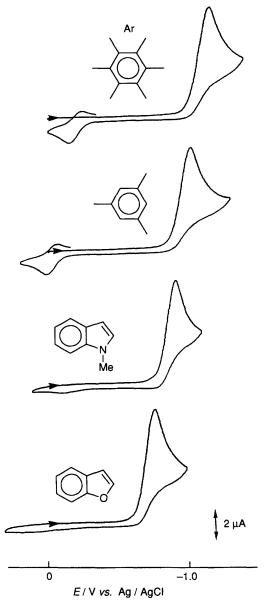
Electron-transfer-catalysed Carbonyl Substitution in [(Arene)Mn(CO)₃]+ Complexes


Catherine C. Neto, Carl D. Baer, Young K. Chung and Dwight A. Sweigart*

Department of Chemistry, Brown University, Providence, RI 02912, USA

Electrochemical reduction of $[(arene)Mn(CO)_3]^+$ in the presence of tertiary phosphites or phosphines (L) produces $[(arene)Mn(CO)_2L]^+$ via electron-transfer catalysis; $[(mesitylene)Re(CO)_3]^+$ is reduced in a two-electron chemically reversible step and does not undergo ligand substitution.

The reductive activation of organometallic complexes to ligand substitution has been demonstrated for a variety of polynuclear and several mononuclear complexes.¹⁻¹⁰ Herein we report that in the presence of some phosphorus nucleophiles, $[(arene)Mn(CO)_3]^+$ undergoes clean electrocatalytic CO substitution to afford $[(arene)Mn(CO)_2L]^+$. In sharp contrast to this behaviour, the rhenium analogues do not undergo ligand substitution upon reduction.

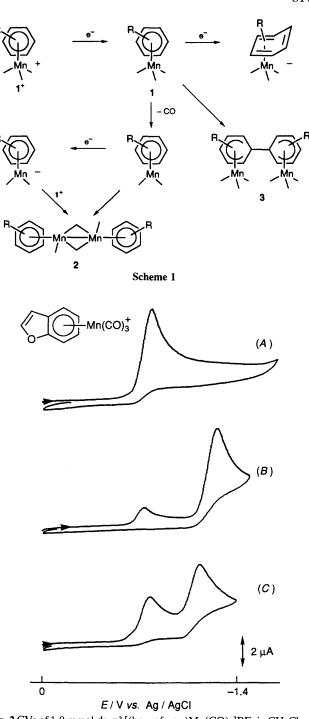
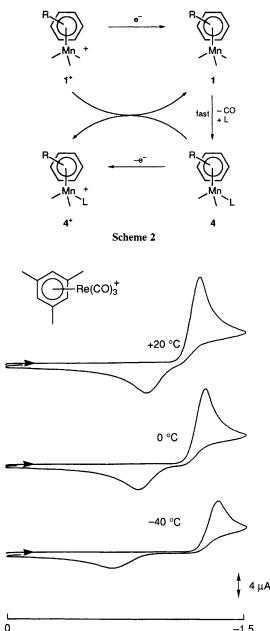

The electrochemical reduction of $[(arene)Mn(CO)_3]^+$ (1⁺) in CH₂Cl₂ under N₂ was found to be chemically irreversible at 20 °C and scan rates up to 20 V s⁻¹ for a range of arenes: C₆H₆ (1a⁺), 1,3,5-C₆H₃Me₃ (1b⁺), 1,3,5-C₆H₃Et₃ (1c⁺), C₆Me₆ (1d⁺), C₆Et₆ (1e⁺), N-methylindole (1f⁺) and benzofuran (1g⁺). Fig. 1 presents typical results. The cyclic voltammograms (CVs) for complexes 1a-d⁺ but not 1e-g⁺ have a reversible couple near 0 V that is due to a product of the primary reduction near -1 V. IR-OTTLE (optically transparent thin-layer electrode) experiments with 1d⁺ suggested that the reduction product is the dimer $[{(C_6Me_6)Mn(CO)_2}_2]$ 2d, which was originally discovered by Eyman *et al.*¹¹ Proof that the reversible couple in the CVs is due to this type of dimer formation in the reduction of 1a-d⁺ was provided by the IR and CV characteristics of genuine samples of 2a-d. Under a CO atmosphere and/or at -40 °C, the formation of 2d from 1d⁺ was inhibited and the primary reduction wave showed partial chemical reversibility, along with an increase in current from n = 1 to n = ca. 1.3. The reduction of 1e-g⁺ consumed one electron and did not lead to 2; IR-OTTLE experiments showed the absence of 2 and suggested that the chemical irreversibility is due to radical

Fig. 1 CVs of 1.0 mmol dm⁻³ [(arene)Mn(CO)₃]PF₆ in CH₂Cl₂– 0.10 mol dm⁻³ Bu₄NPF₆ at 293 K. The arene is indicated above each CV. The working electrode was a 1.0 mm diameter platinum disk and the scan rate was 0.50 V s^{-1} . All potentials are relative to ferrocene $E_{\frac{1}{2}}$ = 0.52 V.


coupling through the arene rings to give cyclohexadienyl (Ch) complexes $[{(Ch)Mn(CO)_3}_2]$ 3 analogous to ones prepared *via* chemical reduction.¹² The lack of any observable oxidation wave for 3 is expected based on observations with monomeric $[(Ch)Mn(CO)_3]$ complexes.¹³

A plausible mechanism for the electrochemical reduction of 1^+ is given in Scheme 1. The 19-electron [(arene)Mn(CO)₃] can dissociate CO followed by dimerization to 2 or reduction to the known^{11,14} [(arene)Mn(CO)₂]⁻ anion, which is expected¹¹ to react rapidly with the starting complex 1^+ . Computer simulation^{15,16} of this dissociative part of the mechanism quantitatively reproduced the CVs for $1a-d^+$ at 20 °C under N₂. Under CO or at low temperature the CO dissociation from 1 is inhibited and direct dimerization to 3 or subsequent reduction to the η^4 -arene complex competes with the formation of 2. It is known^{12,17} that chemical reduction of 1^+ under complex. Apparently, complexes $1e-g^+$ follow the reduction route directly to 3 without forming substantial amounts of 2 or η^4 -arene.

Fig. 2 CVs of 1.0 mmol dm⁻³ [(benzofuran)Mn(CO)₃]BF₄ in CH₂Cl₂-0.10 mol dm⁻³ Bu₄NPF₆ at 293 K in the presence of (A) no nucleophile, (B) 1.5 mmol dm⁻³ P(OBu)₃ and (C) 3.0 mmol dm⁻³ PPh₃. The working electrode was a 1.0 mm diameter platinum disk and the scan rate was 0.50 V s^{-1} . All potentials are relative to ferrocene $E_4 = 0.52 \text{ V}$.

In the presence of tri-n-butyl phosphite, $P(OBu)_3$, the reduction of 1⁺ led to efficient electrocatalytic CO substitution to produce [(arene)Mn(CO)₂{P(OBu)₃}]⁺ (4⁺). No reaction occurred on the time scale of the experiments unless a reducing potential was applied. All of the 1⁺ complexes reacted cleanly with P(OBu)₃ in this manner except 1e⁺, which showed no reaction. The heterocyclic arene complexes 1f⁺ and 1g⁺, but not complexes 1a⁺-1e⁺, also underwent CO substitution in the presence of low concentrations of PPh₃. Fig. 2 shows typical CVs for 1g⁺ and Scheme 2 gives the mechanism. As 1⁺ is reduced to 1, rapid CO substitution

E / V vs. Ag / AgCl

-1.5

Fig. 3 CVs of 1.0 mmol dm⁻³ [(mesitylene)Re(CO)₃]PF₆ in CH₂Cl₂-0.10 mol dm⁻³ Bu₄NPF₆. The working electrode was a 1.0 mm diameter glassy carbon disk and the scan rate was 0.50 V s^{-1} . All potentials are relative to ferrocene $E_{\frac{1}{2}} = 0.52$ V.

occurs to give 4, which is spontaneously oxidized either at the electrode to give 4^+ or via reaction with 1^+ to afford 4^+ and regenerate 1. The process is catalytic because 4+ is reduced at a more negative potential than is 1^+ (the more negative wave in Fig. 2). IR experiments showed that the overall conversion $1^+ \rightarrow 4^+$ is quantitative. Typically, the passage of charge corresponding to 3% of the amount of 1⁺ present was sufficient to effect complete conversion to 4^+ with P(OBu)₃ as the nucleophile $([1^+] = 1 \text{ mmol } dm^{-3}; [P(OBu)_3]$ 1.5 mmol dm⁻³). \overrightarrow{CV} data showed that the reactivity with $P(OBu)_3$ depends on the arene in the order benzofuran $> 1,3,5-C_6H_3Me_3 > 1,3,5-C_6H_3Et_3 \gg C_6Et_6$

The behaviour of [(mesitylene)Re(CO)₃]⁺ 5⁺ is in marked contrast to that of manganese analogue, 1b+. CVs at a glassy carbon electrode (Fig. 3) suggested that the reduction occurs in a two-electron chemically reversible step; double potential step chronoamperometry and steady-state voltammetry with 5 µm and 2 µm diameter platinum disk microelectrodes verified the chemical reversibility and that n = 2. The presence of CO, P(OBu)₃ or PBu₃ had no effect on the CVs. The large cathodic and anodic peak separations in Fig. 3 indicate a slow heterogeneous charge transfer step. The most likely interpretation is that 5^+ is reduced to 5, which undergoes a slow and spontaneous second reduction as the arene slips from η^6 to η^4 . A variety of arene complexes, especially with heavier transition metals, show a similar type of behaviour.18

The conclusion is that $[(arene)Mn(CO)_3]^+$ complexes are activated to CO dissociation (substitution) upon one-electron reduction, whereas the rhenium analogues do not undergo CO dissociation, preferring instead arene ring slippage ('dissociation') in conjunction with the (spontaneous) addition of a second electron to give the 18-electron η^4 -arene complex 5⁻.

This work was supported by the National Science Foundation grant CHE-8821588. We are pleased to acknowledge helpful discussions with Professor D. P. Eyman and experimental assistance by Y. Huang, S. Kim and C. Anderson.

Received, 9th November 1992; Com. 3/00983A+

References

- 1 J. K. Kochi, J. Organomet. Chem., 1986, 300, 139.
- 2 D. Astruc, Angew. Chem., Int. Ed. Engl., 1988, 27, 643.
- 3 G. J. Bezems, P. H. Rieger and S. Visco, J. Chem. Soc., Chem. Commun., 1981, 265.
- M. Arewgoda, P. H. Rieger, B. H. Robinson, J. Simpson and S. J. Visco, J. Am. Chem. Soc., 1982, 104, 5633.
- 5 C. M. Arewgoda, B. H. Robinson and J. Simpson, J. Chem. Soc., Chem. Commun., 1982, 284.
- 6 A. Darchen, C. Mahe and H. Patin, J. Chem. Soc., Chem. Commun., 1982, 243; A. Darchen, J. Chem. Soc., Chem. Commun., 1983, 768.
- 7 M. I. Bruce, D. C. Kehoe, J. G. Matisons, B. K. Nicholson, P. H. Rieger and M. L. Williams, J. Chem. Soc., Chem. Commun., 1982, 442
- 8 B. A. Narayanan, C. Amatore and J. K. Kochi, J. Chem. Soc., Chem. Commun., 1983, 397; H. H. Ohst and J. K. Kochi, J. Am. Chem. Soc., 1986, 108, 2897; M. G. Richmond and J. K. Kochi, Organometallics, 1987, 6, 254.
- 9 D. Miholova and A. A. Vlcek, J. Organomet. Chem., 1985, 279, 317
- 10 B. T. Donovan and W. E. Geiger, J. Am. Chem. Soc., 1988, 110, 2335.
- 11 R. J. Bernhardt, P. J. Schlom, N. C. Baenziger and D. P. Eyman, Abstract No. 377, Inorganic Chemistry Division, American Chemical Society National Meeting, 1987; D. P. Eyman, personal communication.
- 12 M. V. Gaudet, A. W. Hanson, P. S. White and M. J. Zaworotko, Organometallics, 1989, 8, 286.
- 13 D. A. Sweigart, unpublished observations.
- 14 R. J. Bernhardt, M. A. Wilmoth, J. J. Weers, D. M. LaBrush and D. P. Eyman, Organometallics, 1986, 5, 883
- 15 Y. Zhang, D. K. Gosser, P. H. Rieger and D. A. Sweigart, J. Am. Chem. Soc., 1991, 113, 4062.
- 16 D. K. Gosser and P. H. Rieger, Anal. Chem., 1988, 60, 1159.
- 17 R. L. Thompson, S. Lee, A. L. Rheingold and N. J. Cooper, Organometallics, 1991, 10, 1657; R. L. Thompson, S. J. Geib and N. J. Cooper, J. Am. Chem. Soc., 1991, 113, 8961.
- 18 R. G. Finke, R. H. Voegeli, E. D. Laganis and V. Boekelheide, Organometallics, 1983, 2, 347; W. J. Bowyer, J. W. Merkert, W. E. Geiger and A. L. Rheingold, Organometallics, 1989, 8, 191; R. M. Nielson and M. J. Weaver, Organometallics, 1989, **8**, 1636; J. Merkert, R. M. Nielson, M. J. Weaver and W. E. Geiger, J. Am. Chem. Soc., 1989, **111**, 7084; D. T. Pierce and W. E. Geiger, J. Am. Chem. Soc., 1989, 111, 7636; J. Am. Chem. Soc., 1992, 114, 6063.

† Revised version received 17th February 1993.