First Characterization of a Tetrathiomolybdate(v) Derivative by EPR, UV–VIS and IR Spectroelectrochemistry

Roland Schäfer, # Jan Fiedler, b Michael Moscherosch and Wolfgang Kaim* a

^a Institute f
ür Anorganische Chemie der Universit
ät, Pfaffenwaldring 55, D-7000 Stuttgart 80, Germany
 ^b J. Heyrovsky Institute of Physical Chemistry and Electrochemistry, Czech Academy of Sciences, Dolej
škova 3, CS-182 23 Prague, Czech Republic

The trinuclear complex ion [(NC)(OC)₃Re(MoS₄)Re(CO)₃(CN)]²⁻ 1²⁻ is reversibly reduced to a Mo^V containing trianion 1³⁻, which exhibits hypsochromically shifted charge-transfer bands, bathochromically shifted CN, CO and MoS stretching frequencies and an axial EPR signal with $g_{\parallel} > g_{\perp}$.

Four- or five-coordinate Mo^v complexes involving a mixed O/S donor atom set have been much studied1 with regard to their biological relevance, e.g. in the semireduced molybdopterin cofactor.² The reduction of stable tetrathiomolybdate(vi), MoS_4^{2-} , however, requires a very negative reduction potential³ of -2.94 V vs. $Fe(C_5H_5)_2^{0/+}$ in DMF (dimethyl formamide) although the molybdenum 4d orbitals are easily populated optically in relatively low-lying ligand-to-metal charge-transfer excited states.⁴ In our efforts to characterize d¹ tetrathiometalates³ we have now used the twofold coordination of neutral but strongly polarizing low-spin d⁶ fragments $Re(CO)_3(CN)$ to MoS_4^{n-} in order to effect a reversible Movi/Mov transition at moderately negative potentials. Complexes of MoS₄³⁻ may have been involved in electrochemical processes of $(L_n M)_2(\mu - MoS_4)$, $L_n M = (bpy)_2 Ru^{2+,5}$ Mo(CO)₄,^{6a} CuCN;^{6b} we now report the first characterization of such species by spectroelectrochemical techniques.

The trinuclear complex ion $[(NC)(OC)_3Re(MoS_4)Re(CO)_3(CN)]^{2-}$ 1²⁻ was obtained as the bis(tetraethylammonium) salt by treatment of $[Cl(OC)_3Re(MoS_4)Re(CO)_3Cl]^{2-}$ 2²⁻ with NEt₄CN in acetonitrile.[†] (NEt₄)₂(2) was prepared[‡] from Re(CO)₅Cl and (NEt₄)₂MoS₄ in acetonitrile and showed irreversible reduction at -1.76 V cathodic peak potential, on the other hand, (NEt₄)₂(1) is reversibly reduced at -1.62 V vs. Fe(C₅H₅)₂^{0/+} in MeCN-0.1 mol dm⁻³ Bu₄NPF₆.

Spectroelectrochemical reduction of the MoVI species 1^{2-} in an optically transparent thin layer electrolytic (OTTLE) cell^{3,7}

⁺ Dark-blue compound [λ_{max} 16 890, 20 200(sh) and 27 320 cm⁻¹ in acetonitrile], satisfactory elemental analysis (C, H, N).

 $[\]ddagger$ Dark-blue compound [λ_{max} 17180, 20920(sh) and 27750 cm $^{-1}$ in acetonitrile], $\tilde{v}(CO)$ 2010, 1945 and 1905 cm $^{-1}$ (MeCN), satisfactory elemental analysis (C,H,N).

in the above electrolyte showed a clean electron-transfer equilibrium with isosbestic points and low-energy shifts of the weak CN (2118 \rightarrow 2109 cm⁻¹) and of the more intense CO stretching bands [2027(w) \rightarrow 1997(w), 2009 \rightarrow 1985, 1935(br) \rightarrow 1888(br) cm⁻¹, Fig. 1]. The *facial* substitution pattern at the tricarbonylrhenium(1) centre should produce three IR detectable CO stretching bands. The characteristic v_{as}(Mo-S) vibration of the tetrathiometallate core⁴ shows an expected³ low-energy shift on reduction from 460 to 440 cm⁻¹.

Whereas the low-energy shifts of the vibrational bands reflect the occupation of an antibonding orbital in the trianion 1^{3-} , the electronic absorption energies, in particular the two major allowed LMCT transitions $t_1 \rightarrow e$ and $t_2 \rightarrow e$ (spectroscopic T_d symmetry),⁴ show a characteristic intensity loss and a distinct high energy shift on reduction $(1^{2-} \rightarrow 1^{3-})$, *i.e.* from 16890 to 20240 cm⁻¹ and from 27320 to $32\,800(sh)\,cm^{-1}$. These shifts are larger than those of the only other previously reported $d^0 \rightarrow d^1$ tetrathiometallate system, viz., the $\text{ReS}_4^{-/2-}$ species.³ The lowering of the metal oxidation state results in a relative destabilization of the metal d levels and in an increase of the energy of transitions to those orbitals. A weaker band, attributed to a less symmetryfavoured LMCT transition from one of the sulfur p orbital combinations (t₁), is observed for the Mo^V complex 3^{3-} at 17 480 cm⁻¹. Intense metal-to-metal charge-transfer bands are not expected owing to poor orbital overlap.3b Weak ligand-field transitions of the $4d^1$ system 1^{3-} lie at ca. 7500(br,sh) and 9830 cm⁻¹ and thus further in the near-IR region than those of the $5d^1$ ion $\text{ReS}_{4^{2-}}$ (11 500–9500 cm⁻¹).³

The Mo^V trianion 1³⁻ as obtained by electrochemical reduction in Me₂CO-0.1 mol dm⁻³ Bu₄NClO₄ shows an EPR signal only at temperatures below 10 K. The axial spectrum is broadened by a relatively small superhyperfine coupling from two ^{185,187}Re isotopes (I = 5/2, $a_{\parallel} = 3.2$ mT),⁸ the ratio $g_{\parallel} = 2.019 > g_{\perp} = 1.965$ has been similarly reported recently for pentacoordinated Mo^V anions MoO(SAr)₄^{-.1a}

While the EPR results for the MoS_4^{3-} derivative thus agree with previously obtained values for Mo^{\vee} centres in a sulfur-rich environment, the new optical and IR data may be useful in obtaining EPR-independent information on the occurrence of such centres in biology^{1,2} or catalysis.⁹

Fig. 1 IR absorption spectra in the CN/CO-stretching region from reductive spectroelectrochemistry of 1^{2-} ($\rightarrow 1^{3-}$) in acetonitrile $-0.1 \text{ mol dm}^{-3} \text{ Bu}_4 \text{NPF}_6$

Support from DFG (Schwerpunktprogramm and Exchange Program with CAV) is gratefully acknowledged.

Received, 28th January 1993; Com. 3/00557G

References

- (a) N. Ueyama, T. Okamura and A. Nakamura, J. Am. Chem. Soc., 1992, 114, 8129; (b) G. L. Wilson, R. J. Greenwood, J. R. Pilbrow, J. T. Spence and A. G. Wedd, J. Am. Chem. Soc., 1991, 113, 6803.
- 2 S. Gardlik and K. V. Rajagopalan, J. Biol. Chem., 1990, 265, 13047; R. C. Bray, Rev. Biophys., 1988, 21, 299.
- 3 (a) R. Schäfer, W. Kaim, M. Moscherosch and M. Krejčik, J. Chem. Soc., Chem. Commun., 1992, 834; (b) R. Schäfer, W. Kaim and J. Fiedler, Inorg. Chem., in the press.
- 4 A. Müller, E. Diemann, R. Jostes and H. Bögge, Angew. Chem., 1981, 93, 957; Angew. Chem., Int. Ed. Engl., 1981, 20, 934.
- 5 K. Tanaka, M. Morimoto and T. Tanaka, *Inorg. Chim. Acta*, 1981, 56, L61; M. A. Greaney, C. L. Coyle, M. A. Harmer, A. Jordan and E. I. Stiefel, *Inorg. Chem.*, 1989, 28, 912.
- 6 (a) L. D. Rosenhein and J. W. McDonald, *Inorg. Chem.*, 1987, 26, 3414; (b) M. Kony, A. M. Bond and A. G. Wedd, *Inorg. Chem.*, 1990, 29, 4521.
- 7 M. Krejčik, M. Danek and F. Hartl, J. Electroanal. Chem., 1991, 317, 179.
- 8 W. Kaim and S. Kohlmann, *Chem. Phys. Lett.*, 1987, 139, 365.
 9 A. Müller, E. Diemann, A. Branding, F. W. Baumann, M. Breysse
- and M. Vrinat, Appl. Catal., 1990, **62**, L13; T. R. Halbert, T. C. Ho, E.I. Stiefel, R. R. Chianelli and M. Daage, J. Catal., 1991, **130**, 116.