Cadmium Chloride–Magnesium–Water: a New System for Regioselective Transformation of Conjugated Nitroalkenes to Ketocompounds; Conversion of 6-Nitro- Δ^5 -steroids to 6-Ketosteroids

Manobjyoti Bordoloi

Natural Products Chemistry Division, Regional Research Laboratory, Jorhat 785 006, Assam, India

Reaction of 6-nitro- Δ^5 -steroids and nitroalkenes in tetrahydrofuran with CdCl₂–Mg–H₂O furnished 6-ketosteroids and ketocompounds, respectively, in good yield.

Nitro compounds are important precursors in organic synthesis,¹⁻³ the reduction of conjugated nitroalkenes to ketones being one important transformation, and various reagents have been used.⁴⁻⁹ Expensive reagents and stringent reaction conditions are the major drawbacks of most of these reported procedures.

The reaction of $SnCl_2 \cdot 2H_2O$ with 6-nitro- Δ^5 -steroids has been reported to give 5α -hydroxy-6-keto steroids¹⁰ and the Nernst potential difference of Cd/Cd²⁺, Mg/Mg²⁺ is higher than that of Sn/Sn⁴⁺,¹¹ it was therefore expected that the combination of CdCl₂-Mg in a protic solvent would be a useful reducing system for the transformation of conjugated nitroalkenes to other functionalities. Our surmise indeed proved to be correct when we treated 3β-acetoxy-6-nitro-cholest-5-ene in tetrahydrofuran (THF) with CdCl₂-Mg-H₂O system at room temp., within 15 min 3β-acetoxy-5 α -cholestan-6-one was obtained in 85% yield. In this reaction 15% of 3β-acetoxy-5 β -cholestan-6-one was also obtained.

To illustrate the potentiality of the present method a number of reactions of various conjugated α , β -unsaturated nitrosteroids were examined, and the corresponding reduced

ketosteroids were obtained in high yield (Table 1). The reaction of entry 5, hence the regioselectivity of the reducing system, is noteworthy as the 16-nitro group remained intact during the reaction time.

In order to assess the scope of the reaction, 1-nitro-1cyclohexene, β -methyl- β -nitro-styrene and the compound obtained from natural products¹² (entry 9) were treated with the CdCl₂-Mg-H₂O system and in each case corresponding ketocompounds were obtained in 60–85% yield (Table 1).

Although the mechanism of this reduction process is not clearly defined at this stage, the following observations were noted. Anhydrous $CdCl_2$ and Mg in anhydrous THF does not react even after long exposure. But addition of a few drops of water to this mixture initiates vigorous exothermic reaction with evolution of hydrogen (deuterium when D_2O is added) and the formation of metallic cadmium particles. Since $CdCl_2$ is not hydrolysed readily and the pH of the system is *ca.* 7, hydrogen is released from the water present and is possibly replaced by magnesium.

The author expresses sincere thanks to the Director, R. R. L. Jorhat for the provision of facilities, to Dr R. P.

J. CHEM. SOC., CHEM. COMMUN., 1993

Table 1 Reduction of nitroalkenes to ketocompounds^a

y Substrate	Product ^b	Yield ^c (%)	<i>t</i> /min
3β-Acetoxy-6-nitrocholest-5-ene	3β-Acetoxycholestan-6-one	100	15
3β-Acetoxy-6-nitrostigmast-5-ene	3β-Acetoxystigmastan-6-one	90	15
6-Nitrocholest-5-ene	Cholestan-6-one	95	15
3β-Chloro-6-nitrocholest-5-ene	3β-Chlorocholestan-6-one	90	15
		90	15
3-Nitrocholest-2-ene	Cholestan-3-one	95	15
1-Nitrocyclohex-1-ene	Cyclohexanone	85	15
		80	15
		60 ⁴	15
	Substrate 3β-Acetoxy-6-nitrocholest-5-ene 3β-Acetoxy-6-nitrostigmast-5-ene 6-Nitrocholest-5-ene 3β-Chloro-6-nitrocholest-5-ene 3β-Chloro-6-nitrocholest-5-ene $\downarrow \qquad \qquad$	SubstrateProduct ^b 3\beta-Acetoxy-6-nitrocholest-5-ene 3β-Acetoxy-6-nitrocholest-5-ene 6-Nitrocholest-5-ene 3β-Chloro-6-nitrocholest-5-ene 3β-Chloro-6-nitrocholest-5-ene 3β-Chloro-6-nitrocholest-5-ene 3β-Chlorocholestan-6-one 3β-Chlorocholestan-6-one 3β-Chlorocholestan-6-one 3β-Chlorocholestan-6-one 3β-Chlorocholestan-6-one 3β-Chlorocholestan-6-one 3β-Chlorocholestan-6-one 3β-Chlorocholestan-6-one 3β-Chlorocholestan-6-one 3β-Chlorocholestan-6-one 3β-Chlorocholestan-6-one 3β-Chlorocholestan-6-one 3β-Chlorocholestan-6-one 3β-Chlorocholestan-6-one 3β-Chlorocholestan-6-one 3β-Chlorocholestan-6-one 3β-Chlorocholestan-6-one 3β-Chlorocholestan-6-one 3β-Chlorocholestan-6-one 	ySubstrateProductbYieldc (%)3\beta Acetoxy-6-nitrocholest-5-ene 3\beta Acetoxy-6-nitrocholest-5-ene 6-Nitrocholest-5-ene 3\beta Chloro-6-nitrocholest-5-ene 3\beta Chloro-6-nitrocholest-5-ene 3\beta Chlorocholestan-6-one 3\beta Acetoxystigmastan-6-one 3\beta Chlorocholestan-6-one 3\beta Chlorocholestan-6-one 3\beta Chlorocholestan-6-one 3\beta Chlorocholestan-6-one 90100 90 90 903\beta Chlorocholest-5-ene 3\beta Chlorocholestan-6-one AcO NO23\beta Acetoxystigmastan-6-one 9090 903\beta Chlorocholest-5-ene AcO (\beta Chlorocholestan-6-one NO290 (\beta Chlorocholestan-6-one 9090 (\beta Chlorocholestan-6-one 903-Nitrocholest-2-ene 1-Nitrocyclohex-1-eneCholestan-3-one Cyclohexanone95 85(\beta C + \beta C + \be

^a In a typical reaction, 1 mmol of the nitroalkenes in dry THF (3 cm³) was added with stirring to a mixture of anhydrous CdCl₂ (8 mmol), Mg powder (15 mmol). Then water (100 mmol) was added dropwise to this mixture over a period of 5 min. The exothermic reaction took place instantly with the liberation of hydrogen. After 15 min, the reaction mixture was thoroughly washed with CH₂Cl₂ (200 cm³). The CH₂Cl₂ solution was dried (Na₂SO₄), evaporated under reduced pressure to give a residue which on purification by TLC gave the product as a gum or solid. All products were characterized by spectral analysis and direct comparison with authentic compounds. ^b For entries 1-5, both 5α -ketosteroid and 5β -ketosteroids are formed in a ratio of 85:15, respectively. ^c The reaction was conducted with other protic solvents such as MeOH, EtOH, glycols, diglyme and in each case the yield was found to be same. ^d In this reaction 37% of the unreacted starting material was also recovered from the reaction mixture.

Sharma, Dy Director, CIMAP, Lucknow and Dr N. C. Baruah, R. R. L. Jorhat for encouragement.

Received, 9th November 1992; †Com. 2/05979G

References

- 1 A. G. M. Barrett and G. G. Grabski, Chem. Rev., 1986, 86, 751.
- 2 R. S. Verma and G. W. Kabalka, Heterocycles, 1986, 24, 2645.
- 3 G. Rosini, R. Ballini, M. Petrini, M. Marotta and P. Righi, Org. Prep. Proc. Int., 1990, 22(6), 707.
- 4 L. F. Fieser and M. Fieser, Reagents for Organic Synthesis, vol. 1, New York, 1967, p. 1276; J. Mauthner and W. Suida, Monat-

† Received in revised form 16th February 1993.

schefte, 1894, 15, 85; 1903, 24, 648; A. Windaus, Berichte, 1903, 36. 3752.

- 5 J. M. Aizpurua, M. Oiarbide and C. Palomo, Tetrahedron Lett., 1987, 28, 5365.
- 6 M. S. Mourad, R. S. Verma and G. W. Kabalka, Synthesis, 1985, 654
- 7 R. S. Verma, M. Verma and G. W. Kabalka, Tetrahedron Lett., 1985, **26(32**), 3777.
- 8 S. Toru, H. Tanaka and T. Katoh, Chem. Lett., 1983, 607.
- 9 G. M. Singhal, N. B. Das and R. P. Sharma, J. Chem. Soc., Chem. Commun., 1989, 1470.
- 10 G. M. Singhal, N. B. Das and R. P. Sharma, J. Chem. Soc., Chem. Commun., 1989, 498.
- 11 S. Glasstone, Introduction to Electrochemistry, Van Nostrand, NY, 1962, p. 243, 267; J. D. Lee, A New Concise Inorganic Chemistry, ELBS and Van Nostrand and Reinhold Company Ltd., London, 1979, p. 104–109. 12 J. C. Sarma, N. C. Baruah, R. P. Sharma and J. N. Baruah,
- Tetrahedron, 1983, 39, 2843.