Chiral Induction in Aryl Radical Cyclization to the Aldimino Functional Group

Mirosław J. Tomaszewski and John Warkentin*

Department of Chemistry, McMaster University, Hamilton, Ontario, Canada L8S 4M1

6-*endo* Cyclization of aryl radicals to carbon of aldimino double bonds (N-5/C-6) in chiral *ortho*-substituents afforded 1,2,3,4-tetrahydroisoquinolines in yields to 69%, with 58% d.e. and 97% e.e., while 5-*exo* cyclization to carbon in isomeric radicals (C-5/N-6 aldimine), leading to indanamines, was highly regioselective and fast, $k_{5-exo} = 3.9 \times 10^8 \text{ s}^{-1}$ at 80 °C.

Intramolecular radical cyclization reactions have emerged as a powerful synthetic tool for the construction of both carbocyclic and heterocyclic rings.¹ For example, aryl radical cyclization to the imino group, wherein the choice is between 5-*exo* closure to the N-atom and 6-*endo* closure to the C-atom (N-5/C-6), is regioselective in the endocyclic mode and gives tetrahydroisoquinolines in good to moderate yields.^{2,3} In this communication, we report on the diastereoselectivity of the 6-*endo* closures to the C-atom of an aldimino group, leading to chiral isoquinolines. The regioselectivity and the kinetics of aryl radical cyclization to the isomeric imino group, wherein the choice is between 5-*exo* closure to the C-atom and 6-*endo* closure to the N-atom (C-5/N-6) are also reported. Finally, the potential for cyclization to the imino functionality in the lower homologue, wherein the choice is between 4-exo ring closure to the N-atom and 5-endo closure to the C-atom (N-4/C-5), was also investigated.

Syringe-pump addition of tri-n-butyltin hydride (TBTH) (2.0 mmol) and azoisobutyronitrile (AIBN) (0.36 mmol) in PhH (9 cm³) over 9 h to the unisolated aldimine (S)-**3a** (1.6 mmol in 31 cm³ of PhH at reflux), prepared in 95% yield from amine **1a** and (R)-2,3-O-isopropylideneglyceraldehyde **2**,4 gave the following product ratios: S,S-**4a** : R,S-**4a** : S-**5a** : S-**6a** = 37:9.8: ca. 1:5.7 (GC and ¹H NMR) (Scheme 1). The diastereoisomeric tetrahydroisoquinolines, S,S- and R,S-**4a**, were isolated in 69% yield (from **1a**) and the diastereoisomeric excess (d.e.) was 58%. That diastereoselectivity could be improved moderately by running the reaction at a lower

Scheme 1. Reagents and conditions: i, 4 Å sieves, CH₂Cl₂ or Et₂O, 5-20 °C, 2 h; ii, Bu₃SnH, AIBN, PhH, reflux

Scheme 2. Reagents and conditions: i, $ClCO_2Et$, 1% NaOH (aq), CH_2Cl_2 , 5 °C, 1.5 h; ii, 80% HOAc, room temp., 14 h

temperature. Heating of aldimine S-3a, TBTH (1.4 equiv., 0.58 mol dm⁻³), and excess AIBN (1.8 equiv., a small fraction decomposes) in a degassed sealed tube at 60 °C for 2 h resulted in a d.e. of 65% (GC).

The stereochemistry of the new stereocentre, C-1, in the tetrahydroisoquinolines was assigned by conversion to a compound of known absolute configuration. Syringe-pump addition of TBTH (5.7 mmol) and AIBN (1.4 mmol) in PhH (18 cm³) to aldimine S-3b (4.1 mmol) in PhH (50 cm³, 80 °C) gave the diastereoisomeric isoquinolines 4b (62%, from 1b) with 53% d.e. The amino group of the major diastereoisomer was protected and the 1,2-diol function was unmasked (85% overall, Scheme 2). Comparison of the optical rotations and the ¹H NMR data of the MacLean isoquinoline, ⁵ R, S-7 ($[\alpha]_{D}^{22}$ = -25.4 (c = 0.835 g/100 cm³; -25.6, c = 0.242 g/100 cm³, CHCl₃) showed that the relationship is one of diastereoisomers.

To prove that chiral integrity had been maintained throughout the route to S, S-4b, S, S-4b (1 part) was mixed with the chiral solvating agent (R)-(-)-2,2,2-trifluoro-1-(9-anthryl)ethanol (3 parts) and the ¹H NMR (500 MHz) spectrum was recorded.⁶ A similar mixture with scalemic 4b, prepared from scalemic 2, was shown to have a pronounced nonequivalence in chemical shifts, $\Delta\delta$, for the H-1' and the methyl groups of the acetonide. By comparison of the spectra from scalemic 4b and S, S-4b, the % e.e. for the major isoquinoline S, S-4b was found to be 97%. Based on the sense of the nonequivalence observed, the proposed interaction between the chiral solvating agent and S, S-4b is as shown in Fig. 1 with the H-1' atom *cis* to the anthryl group and shielded by it. The acetonide methyl groups are affected as well.

The regioselectivity of aryl radical cyclization to the isomeric aldimino group (choice of 5-exo closure to the C-atom or 6-endo closure to the N-atom), in contrast, was

Scheme 3. Reagents and conditions: i, 4 Å sieves, PhH, 6–10 °C; ii, Bu₃SnH (1.3 equiv.), 15% AIBN, PhH, reflux (9a-9d, all at once addition of Bu₃SnH and AIBN; 9e, syringe-pump addition of Bu₃SnH and AIBN over 9 h)

found to be exclusively in the 5-exo sense (Scheme 3). In a one-pot procedure, the primary aldimine 9, formed by the condensation of 8 with an amine, was used directly, after filtration from molecular sieves, in the radical cyclization with TBTH (1.3 equiv.) and 15% AIBN. The only products of cyclization detected by ¹H NMR spectroscopy were 1-in-danamines 11 with overall isolated yields in the range 50–68%,

Table 1 Kinetic data for cyclization of N-benzylaldimine 9a at 80 °C

[SnH] ^a / mol dm ⁻³	Product ratio ^b (11a/10a)	Ratios of rate csts/mol dm ⁻³ (k_5/k_H)	Integrals relative to TMS	
			9a/TMS	(10a + 11a)/ TMS
0.473	2.4	1.1	0.9	0.9
0.473	2.4	1.1	0.7	0.8
0.237	4.8	1.1	0.9	1.0
0.118	8.5	1.0	1.0	1.0
0.059	14	0.8	1.0	1.0
0.059	14	0.8	1.0	1.0

^{*a*} Bu₃SnH was in 8.6 fold excess, and the concentrations are averages based on expected 1:1 stoichiometry. Solvent was PhH (7% AIBN) and solutions were degassed and flame sealed. ^{*b*} Ratios from the integrals in ¹H NMR (500 MHz) spectra.

Fig. 1 Interaction between the chiral solvating agent and S, S-4b

from 8. This preference for 5-*exo* closures to the C-atom of the imino group (C-5/N-6) is the same as that reported for closures to the hydroxyimino⁷ and N-aziridinylimino⁸ functionalities.

Table 1 summarizes product ratios and derived rate constants for cyclization of N-benzylaldimine 9a. Reactions were found to proceed cleanly to the indanamine 11a and the reduced starting material 10a, as evident from the equivalence of the ratios 9a/TMS and (10a + 11a)/TMS. The best value for the ratio $k_5/k_{\rm H}/{\rm mol}~{\rm dm}^{-3}$ of 1.1 indicates that the closure of the aryl radical derived from 9a is highly efficient. Substituting the value for $k_{\rm H}^{\rm Ar}$ (80 °C) = 3.5 × 10⁸ dm³ mol⁻¹ s⁻¹, calculated from⁹ log $k_{\rm H}^{\rm Ar}$ = 9.6 – 1.7/ θ , gave $k_{5\text{-}exo}$ = 3.9 × 10⁸ s⁻¹, at 80 °C. This is the fastest ring closure to the aldimino group known to date. The regioselectivity and the value of the 5-exo rate constant for cyclization of the radical from 9a are, in fact, similar to those for the o-butenylphenyl radical.¹⁰ This is probably due to the fact that the geometry of the imine (Csp3-Csp2 bond length 1.50 Å, C=N bond length 1.30 Å, C-C=N bond angle 121.5°) resembles that of the alkene (Csp³-Csp² bond length 1.508 Å, C=C bond length 1.347 Å, C-C=C bond angle 123.8°).11

Radical cyclization to imines (N-4/C-5) in which the only likely closure would be in the 5-endo sense to the C-atom, was also investigated.¹² Syringe-pump addition of TBTH (1.3 equiv.) and AIBN (0.35 equiv.) to the Schiff base **12** gave 3,4-dimethoxybenzonitrile **13** and toluene, but none of the product of radical cyclization. In a reasonable mechanism (Scheme 4) the aryl radical, formed by removal of the Br-atom, abstracts the azomethine H-atom forming the imidoyl radical. Although the intramolecular 1,5-H-atom transfer of the azomethine proton is apparently unprecedented, the analogous process is well known in aldehydes.¹⁴ As the 1,5-H-atom transfer was clearly faster than the 5-endo

cyclization to the C-atom in Schiff base 12, cyclization in ketimine 14 was attempted. When treated under conditions of dilute TBTH (1.2 equiv.) and catalytic amounts of AIBN (10%) in refluxing PhH, 14 was cleanly converted to the dehalogenated ketimine 15, and none of the product of cyclization was detected (¹H NMR). Based on the assumption that 4% or less would not have been detected by ¹H NMR spectroscopy, the ratio $k_c/k_{\rm H}$ is ≤ 0.0016 mol dm⁻³ at 80 °C, assuming a mean stannane concentration of 0.039 mol dm⁻³. Substituting the value of 3.5×10^8 dm³ mol⁻¹ s⁻¹ for $k_{\rm H}$ gives an upper limit for the 5-*endo* ring closure rate constant of 5.6 $\times 10^5$ s⁻¹ at 80 °C. The 5-*endo* cyclization of the *o*-propenyl-oxyphenyl radical¹⁵ 16 is also poor, the ratio $k_c/k_{\rm H}$ being <0.01 mol dm⁻³ at 130 °C.

We are grateful for financial support of this work from the NSERC (Canada).

Received, 2nd March 1993; Com. 3/01221B

References

- 1 C. P. Jasperse, D. P. Curran and T. L. Fevig, *Chem. Rev.*, 1991, **91**, 1237 and references therein.
- 2 S. Takano, M. Suzuki, A. Kijima and A. Ogasawara, *Chem. Lett.*, 1990, 315.
- 3 M. J. Tomaszewski and J. Warkentin, *Tetrahedron Lett.*, 1992, **33**, 2123.
- 4 C. R. Schmid, J. D. Bryant, M. Dowlatzedah, J. L. Phillips, D. E. Prather, R. D. Schantz, N. L. Sear and C. S. Vianco, J. Org. Chem., 1991, 56, 4056.
- 5 Z. Czarnocki, D. B. MacLean and W. A. Szarek, Can. J. Chem., 1986, 64, 2205.
- 6 G. R. Weisman, in Asymmetric Synthesis, ed. J. D. Morrison, Academic Press, New York, vol. 1, 1983, p. 153.
- 7 S. E. Booth, P. R. Jenkins and C. J. Swain, J. Chem. Soc., Chem. Commun., 1991, 1248; E. J. Enholm, J. A. Burroff and L. M. Jaramillo, *Tetrahedron Lett.*, 1990, **31**, 3727; P. A. Bartlett, K. L. McLaren and P. C. Ting, J. Am. Chem. Soc., 1988, **110**, 1633; E. J. Corey and S. G. Pyne, *Tetrahedron Lett.*, 1983, **24**, 2821.
- 8 S. Kim, I. S. Kee and S. Lee, J. Am. Chem. Soc., 1991, 113, 9882.
 9 A. N. Abeywickrema, A. L. J. Beckwith and S. Gerba, J. Org.
- *Chem.*, 1987, **52**, 4072.
- 10 A. N. Abeywickrema and A. L. J. Beckwith, J. Chem. Soc., Chem. Commun., 1986, 464.
- 11 Imine geometry that of N-ethylidenemethanamine. J. Meier, A. Bauder and H. Gunthard, J. Chem. Phys., 1972, 57, 1219. Alkene geometry that of (E)-but-2-ene. A. Almenningen, I. M. Anfinsen and A. Haaland, Acta Chem. Scand., 1970, 24, 43.
- 12 For an example with indirect evidence of 5-endo attack on the N-atom of the imino group (C-4/N-5), see D. D. Tanner and P. M. Rahimi, J. Org. Chem., 1979, 44, 1674.
- 13 M. D. Bachi and D. Denenmark, J. Am. Chem. Soc., 1989, 111, 1886; L. A. Singer and S. S. Kim, Tetrahedron Lett., 1974, 10, 861.
- 14 The rate constant for the 1,5 H-atom transfer in the 4-formylbutyl radical is 1.5 × 10⁵ s⁻¹, at 80 °C. A. L. J. Beckwith and B. P. Hay, J. Am. Chem. Soc., 1989, 111, 2674.
- 15 A. L. J. Beckwith and W. B. Gara, J. Chem. Soc., Perkin Trans. 2, 1975, 795.