# Chiral Induction in Aryl Radical Cyclization to the Aldimino Functional Group 

Mirosław J. Tomaszewski and John Warkentin*
Department of Chemistry, McMaster University, Hamilton, Ontario, Canada L8S 4M1
6-endo Cyclization of aryl radicals to carbon of aldimino double bonds ( $\mathrm{N}-5 / \mathrm{C}-6$ ) in chiral ortho-substituents afforded 1,2,3,4-tetrahydroisoquinolines in yields to $69 \%$, with $58 \%$ d.e. and $97 \%$ e.e., while 5 -exo cyclization to carbon in isomeric radicals ( $\mathrm{C}-5 / \mathrm{N}-6$ aldimine), leading to indanamines, was highly regioselective and fast, $k_{5 \text {-exo }}=3.9 \times 10^{8} \mathrm{~s}^{-1}$ at $80^{\circ} \mathrm{C}$.


#### Abstract

Intramolecular radical cyclization reactions have emerged as a powerful synthetic tool for the construction of both carbocyclic and heterocyclic rings. ${ }^{1}$ For example, aryl radical cyclization to the imino group, wherein the choice is between 5 -exo closure to the N -atom and 6 -endo closure to the C -atom ( $\mathrm{N}-5 / \mathrm{C}-6$ ), is regioselective in the endocyclic mode and gives tetrahydroisoquinolines in good to moderate yields. ${ }^{2,3}$ In this communication, we report on the diastereoselectivity of the 6 -endo closures to the C -atom of an aldimino group, leading to chiral isoquinolines. The regioselectivity and the kinetics of aryl radical cyclization to the isomeric imino group, wherein the choice is between 5 -exo closure to the C -atom and 6 -endo closure to the N -atom (C-5/N-6) are also reported. Finally, the potential for cyclization to the imino functionality in the lower


homologue, wherein the choice is between 4-exo ring closure to the N -atom and 5 -endo closure to the C -atom ( $\mathrm{N}-4 / \mathrm{C}-5$ ), was also investigated.
Syringe-pump addition of tri-n-butyltin hydride (TBTH) ( 2.0 mmol ) and azoisobutyronitrile (AIBN) ( 0.36 mmol ) in $\mathrm{PhH}\left(9 \mathrm{~cm}^{3}\right)$ over 9 h to the unisolated aldimine ( $S$ )-3a (1.6 mmol in $31 \mathrm{~cm}^{3}$ of PhH at reflux), prepared in $95 \%$ yield from amine 1a and ( $R$ )-2,3- $O$-isopropylideneglyceraldehyde 2,4 gave the following product ratios: $S, S-4 \mathbf{a}: R, S-\mathbf{4 a}: S-5 \mathbf{a}: S-6 \mathbf{a}$ $=37: 9.8: c a .1: 5.7$ (GC and ${ }^{1} \mathrm{H}$ NMR) (Scheme 1). The diastereoisomeric tetrahydroisoquinolines, $S, S$ - and $R, S-4 a$, were isolated in $69 \%$ yield (from 1a) and the diastereoisomeric excess (d.e.) was $58 \%$. That diastereoselectivity could be improved moderately by running the reaction at a lower


Scheme 1. Reagents and conditions: i, $4 \AA$ sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{Et}_{2} \mathrm{O}, 5-20^{\circ} \mathrm{C}, 2 \mathrm{~h}$; ii, $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, PhH , reflux


Scheme 2. Reagents and conditions: $\mathrm{i}, \mathrm{ClCO}_{2} \mathrm{Et}, 1 \% \mathrm{NaOH}(\mathrm{aq})$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$; ii, $80 \%$ HOAc, room temp., 14 h
temperature. Heating of aldimine $S$ - $\mathbf{3 a}$, TBTH (1.4 equiv., $0.58 \mathrm{~mol} \mathrm{dm}^{-3}$ ), and excess AIBN ( 1.8 equiv., a small fraction decomposes) in a degassed sealed tube at $60^{\circ} \mathrm{C}$ for 2 h resulted in a d.e. of $65 \%$ (GC).

The stereochemistry of the new stereocentre, $\mathrm{C}-1$, in the tetrahydroisoquinolines was assigned by conversion to a compound of known absolute configuration. Syringe-pump addition of TBTH ( 5.7 mmol ) and AIBN ( 1.4 mmol ) in PhH $\left(18 \mathrm{~cm}^{3}\right)$ to aldimine $S-3 \mathrm{~b}(4.1 \mathrm{mmol})$ in $\mathrm{PhH}\left(50 \mathrm{~cm}^{3}, 80^{\circ} \mathrm{C}\right)$ gave the diastereoisomeric isoquinolines $\mathbf{4 b}$ ( $62 \%$, from $\mathbf{1 b}$ ) with $53 \%$ d.e. The amino group of the major diastereoisomer was protected and the 1,2 -diol function was unmasked ( $85 \%$ overall, Scheme 2). Comparison of the optical rotations and the ${ }^{1} \mathrm{H}$ NMR data of the MacLean isoquinoline, ${ }^{5} R, S-7$ ( $[\alpha]_{\mathrm{D}}^{23}$ $=+72.8\left(c=0.81 \mathrm{~g} / 100 \mathrm{~cm}^{3}, \mathrm{CHCl}_{3}\right)$, to those of ours, $S, S-7$, $\left([\alpha]_{\mathrm{D}}^{22}=-25.4\left(c=0.835 \mathrm{~g} / 100 \mathrm{~cm}^{3} ;-25.6, c=0.242\right.\right.$ $\mathrm{g} / 100 \mathrm{~cm}^{3}, \mathrm{CHCl}_{3}$ ) showed that the relationship is one of diastereoisomers.

To prove that chiral integrity had been maintained throughout the route to $S, S-\mathbf{4 b}, S, S-\mathbf{4 b}$ (1 part) was mixed with the chiral solvating agent $(R)$-( - )-2,2,2-trifluoro-1-(9-anthryl)ethanol ( 3 parts) and the ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$ ) spectrum was recorded. ${ }^{6}$ A similar mixture with scalemic $\mathbf{4 b}$, prepared from scalemic 2 , was shown to have a pronounced nonequivalence in chemical shifts, $\Delta \delta$, for the $\mathrm{H}-1^{\prime}$ and the methyl groups of the acetonide. By comparison of the spectra from scalemic $\mathbf{4 b}$ and $S, S-4 \mathbf{b}$, the \% e.e. for the major isoquinoline $S, S-4 b$ was found to be $97 \%$. Based on the sense of the nonequivalence observed, the proposed interaction between the chiral solvating agent and $S, S-\mathbf{4 b}$ is as shown in Fig. 1 with the $\mathrm{H}-1^{\prime}$ atom cis to the anthryl group and shielded by it. The acetonide methyl groups are affected as well.

The regioselectivity of aryl radical cyclization to the isomeric aldimino group (choice of 5-exo closure to the C -atom or 6 -endo closure to the N -atom), in contrast, was


Scheme 3. Reagents and conditions: i, $4 \AA$ sieves, $\mathrm{PhH}, 6-10^{\circ} \mathrm{C}$; ii, $\mathrm{Bu}_{3} \mathrm{SnH}$ ( 1.3 equiv.), $15 \%$ AIBN, PhH , reflux ( $9 \mathrm{a}-9 \mathrm{~d}$, all at once addition of $\mathrm{Bu}_{3} \mathrm{SnH}$ and $\mathrm{AIBN} ; 9 \mathbf{9}$, syringe-pump addition of $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN over 9 h )


Scheme 4
found to be exclusively in the 5-exo sense (Scheme 3). In a one-pot procedure, the primary aldimine 9 , formed by the condensation of 8 with an amine, was used directly, after filtration from molecular sieves, in the radical cyclization with TBTH ( 1.3 equiv.) and $15 \%$ AIBN. The only products of cyclization detected by ${ }^{1} \mathrm{H}$ NMR spectroscopy were 1 -indanamines 11 with overall isolated yields in the range $50-68 \%$,

Table 1 Kinetic data for cyclization of $N$-benzylaldimine 9 a at $80^{\circ} \mathrm{C}$

| $\begin{aligned} & {[\mathrm{SnH}]^{a /}} \\ & \mathrm{mol} \mathrm{dm}^{-3} \end{aligned}$ | Product ratio ${ }^{b}$ <br> (11a/10a) | Ratios of rate csts $/ \mathrm{moldm}^{-3}$ ( $k_{5} / k_{\mathrm{H}}$ ) | Integrals relative to TMS |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | 9a/TMS | $\begin{aligned} & (10 \mathbf{a}+11 \mathbf{a}) / \\ & \text { TMS } \end{aligned}$ |
| 0.473 | 2.4 | 1.1 | 0.9 | 0.9 |
| 0.473 | 2.4 | 1.1 | 0.7 | 0.8 |
| 0.237 | 4.8 | 1.1 | 0.9 | 1.0 |
| 0.118 | 8.5 | 1.0 | 1.0 | 1.0 |
| 0.059 | 14 | 0.8 | 1.0 | 1.0 |
| 0.059 | 14 | 0.8 | 1.0 | 1.0 |

${ }^{a} \mathrm{Bu}_{3} \mathrm{SnH}$ was in 8.6 fold excess, and the concentrations are averages based on expected $1: 1$ stoichiometry. Solvent was PhH (7\% AIBN) and solutions were degassed and flame sealed. ${ }^{b}$ Ratios from the integrals in ${ }^{1} \mathrm{H}$ NMR ( 500 MHz ) spectra.


Fig. 1 Interaction between the chiral solvating agent and $S, S-4 \mathbf{b}$
from 8. This preference for 5-exo closures to the C -atom of the imino group ( $\mathrm{C}-5 / \mathrm{N}-6$ ) is the same as that reported for closures to the hydroxyimino ${ }^{7}$ and N -aziridinylimino ${ }^{8}$ functionalities.
Table 1 summarizes product ratios and derived rate constants for cyclization of $N$-benzylaldimine 9a. Reactions were found to proceed cleanly to the indanamine 11a and the reduced starting material 10a, as evident from the equivalence of the ratios $9 \mathbf{a}$ /TMS and $(\mathbf{1 0 a}+\mathbf{1 1 a}) /$ TMS. The best value for the ratio $k_{5} / k_{\mathrm{H}} / \mathrm{mol} \mathrm{dm}^{-3}$ of 1.1 indicates that the closure of the aryl radical derived from 9 a is highly efficient. Substituting the value for $k_{\mathrm{H}}{ }^{\mathrm{Ar}}\left(80^{\circ} \mathrm{C}\right)=3.5 \times 10^{8} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$, calculated from ${ }^{9} \log k_{\mathrm{H}^{\mathrm{Ar}}}=9.6-1.7 / \theta$, gave $k_{5-\text { exo }}=3.9 \times 10^{8}$ $\mathrm{s}^{-1}$, at $80^{\circ} \mathrm{C}$. This is the fastest ring closure to the aldimino group known to date. The regioselectivity and the value of the 5 -exo rate constant for cyclization of the radical from 9 a are, in fact, similar to those for the $o$-butenylphenyl radical. ${ }^{10}$ This is probably due to the fact that the geometry of the imine ( $\mathrm{Csp}^{3}-\mathrm{Csp}^{2}$ bond length $1.50 \AA, \mathrm{C}=\mathrm{N}$ bond length $1.30 \AA$, $\mathrm{C}-\mathrm{C}=\mathrm{N}$ bond angle $121.5^{\circ}$ ) resembles that of the alkene ( $\mathrm{Csp}^{3}-\mathrm{Csp}^{2}$ bond length $1.508 \AA, \mathrm{C}=\mathrm{C}$ bond length $1.347 \AA$, $\mathrm{C}-\mathrm{C}=\mathrm{C}$ bond angle $123.8^{\circ}$ ). ${ }^{11}$

Radical cyclization to imines ( $\mathrm{N}-4 / \mathrm{C}-5$ ) in which the only likely closure would be in the 5 -endo sense to the C -atom, was also investigated. ${ }^{12}$ Syringe-pump addition of TBTH ( 1.3 equiv.) and AIBN ( 0.35 equiv.) to the Schiff base 12 gave 3,4-dimethoxybenzonitrile 13 and toluene, but none of the product of radical cyclization. In a reasonable mechanism (Scheme 4) the aryl radical, formed by removal of the Br -atom, abstracts the azomethine H -atom forming the imidoyl radical, which subsequently fragments ${ }^{13}$ to 13 and the benzyl radical. Although the intramolecular $1,5-\mathrm{H}$-atom transfer of the azomethine proton is apparently unprecedented, the analogous process is well known in aldehydes. ${ }^{14}$ As the $1,5-\mathrm{H}$-atom transfer was clearly faster than the 5 -endo

cyclization to the C -atom in Schiff base 12, cyclization in ketimine 14 was attempted. When treated under conditions of dilute TBTH ( 1.2 equiv.) and catalytic amounts of AIBN ( $10 \%$ ) in refluxing $\mathrm{PhH}, \mathbf{1 4}$ was cleanly converted to the dehalogenated ketimine 15 , and none of the product of cyclization was detected ( ${ }^{1} \mathrm{H}$ NMR). Based on the assumption that $4 \%$ or less would not have been detected by ${ }^{1} \mathrm{H}$ NMR spectroscopy, the ratio $k_{\mathrm{d}} / k_{\mathrm{H}}$ is $\leq 0.0016 \mathrm{~mol} \mathrm{dm}^{-3}$ at $80^{\circ} \mathrm{C}$, assuming a mean stannane concentration of $0.039 \mathrm{~mol} \mathrm{dm}^{-3}$. Substituting the value of $3.5 \times 10^{8} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ for $k_{\mathrm{H}}$ gives an upper limit for the 5 -endo ring closure rate constant of 5.6 $\times 10^{5} \mathrm{~s}^{-1}$ at $80^{\circ} \mathrm{C}$. The 5 -endo cyclization of the $o$-propenyloxyphenyl radical ${ }^{15} 16$ is also poor, the ratio $k_{\mathrm{d}} / k_{\mathrm{H}}$ being $<0.01 \mathrm{~mol} \mathrm{dm}^{-3}$ at $130^{\circ} \mathrm{C}$.
We are grateful for financial support of this work from the NSERC (Canada).

Received, 2nd March 1993; Com. 3/01221B

## References

1 C. P. Jasperse, D. P. Curran and T. L. Fevig, Chem. Rev., 1991, 91, 1237 and references therein.
2 S. Takano, M. Suzuki, A. Kijima and A. Ogasawara, Chem. Lett., 1990, 315.
3 M. J. Tomaszewski and J. Warkentin, Tetrahedron Lett., 1992, 33, 2123.

4 C. R. Schmid, J. D. Bryant, M. Dowlatzedah, J. L. Phillips, D. E. Prather, R. D. Schantz, N. L. Sear and C. S. Vianco, J. Org. Chem., 1991, 56, 4056.
5 Z. Czarnocki, D. B. MacLean and W. A. Szarek, Can. J. Chem., 1986, 64, 2205.
6 G. R. Weisman, in Asymmetric Synthesis, ed. J. D. Morrison, Academic Press, New York, vol. 1, 1983, p. 153.
7 S. E. Booth, P. R. Jenkins and C. J. Swain, J. Chem. Soc., Chem. Commun., 1991, 1248; E. J. Enholm, J. A. Burroff and L. M. Jaramillo, Tetrahedron Lett., 1990, 31, 3727; P. A. Bartlett, K. L. McLaren and P. C. Ting, J. Am. Chem. Soc., 1988, 110, 1633; E. J. Corey and S. G. Pyne, Tetrahedron Lett., 1983, 24, 2821.

8 S. Kim, I. S. Kee and S. Lee, J. Am. Chem. Soc., 1991, 113, 9882.
9 A. N. Abeywickrema, A. L. J. Beckwith and S. Gerba, J. Org. Chem., 1987, 52, 4072.
10 A. N. Abeywickrema and A. L. J. Beckwith, J. Chem. Soc., Chem. Commun., 1986, 464.
11 Imine geometry that of $N$-ethylidenemethanamine. J. Meier, A. Bauder and H. Gunthard, J. Chem. Phys., 1972, 57, 1219. Alkene geometry that of $(E)$-but-2-ene. A. Almenningen, I. M. Anfinsen and A. Haaland, Acta Chem. Scand., 1970, 24, 43.
12 For an example with indirect evidence of 5-endo attack on the $N$-atom of the imino group (C-4/N-5), see D. D. Tanner and P. M. Rahimi, J. Org. Chem., 1979, 44, 1674.
13 M. D. Bachi and D. Denenmark, J. Am. Chem. Soc., 1989, 111, 1886; L. A. Singer and S. S. Kim, Tetrahedron Lett., 1974, 10, 861.
14 The rate constant for the $1,5 \mathrm{H}$-atom transfer in the 4 -formylbutyl radical is $1.5 \times 10^{5} \mathrm{~s}^{-1}$, at $80^{\circ} \mathrm{C}$. A. L. J. Beckwith and B. P. Hay, J. Am. Chem. Soc., 1989, 111, 2674.

15 A. L. J. Beckwith and W. B. Gara, J. Chem. Soc., Perkin Trans. 2, 1975, 795.

