Towards the Design of Tricyclopenta[*def,jkl,pqr*]triphenylene ('Sumanene'): a 'Bowl-shaped' Hydrocarbon featuring a Structural Motif Present in C₆₀ (Buckminsterfullerene)

Goverdhan Mehta,* a,b Shailesh R. Shah and K. Ravikumar c

 School of Chemistry, University of Hyderabad Hyderabad 500 134, India
 Jawaharlal Nehru Centre for Advanced Scientific Research, Indian Institute of Science Campus, Bangalore 560 012, India
 India

c Indian Institute of Chemical Technology, Hyderabad, 500 007, India

A short synthesis of C_3 symmetry 1,5,9-trimethyltriphenylene **3a** and its further elaboration to methyl dicyclopenta[*def,jkl*]triphenylene is reported.

Despite commercial availability and improved preparative access, the *de novo* design of C_{60} and its siblings is a challenging and formidable synthetic proposition. The primary task in the synthetic endeavour towards C_{60} is the identification and assembly of smaller, readily recognizable, structural fragments that can be further built upon. Two structural features that readily identify themselves in C_{60} can be represented, in equivalent hydrocarbon forms, as the 'bowl-shaped' C_{20} -corannulene 1^1 and C_{21} -sumanene 2.[†] While the former has been synthesized and continues to receive attention, 1b,c the latter, to our knowledge, remains unknown and little progress, if any, has been reported towards

its synthesis. In this communication, we disclose our synthetic strategy aimed at **2** and the progress achieved so far.

Our approach to 2 delineated retrosynthetically $(2 \rightarrow 3)$ hinged on the pivotal role of a trisubstituted triphenylene like 3 of C_3 symmetry in which the substituent could be exploited to establish the three methylene bridges across the starred positions. Molecular mechanics calculations (MMX) indicated

[†] The shape of **2**, with the ring edges on the rim resembling petals, is reminiscent of a flower ('Suman' in Hindi and Sanskrit) and we propose the trivial name 'Sumanene' for this C_{21} -hydrocarbon.

J. CHEM. SOC., CHEM. COMMUN., 1993

Scheme 1 Reagents and yield: i, CH₂=CH-CH₂CH₂MgBr, Li₂CuCl₄, tetrahydrofuran (THF), $-10 \rightarrow 25$ °C, 3 h, 45%; ii, a, BuⁿLi, tetramethylethylenediamine (TMEDA), C₆H₆, 90 °C, 5 h, then b, CH₂=CH-[CH₂]₂Br, 5 °C, 25%; iii, BF_{3(g)}, C₆H₆, 25 °C, 2 h, 55%; iv, DDQ, C₆H₆, 95 °C, 2 h, 46% v, N-bromosuccinimide, azoisobutyronitrile, CCl₄, 95 °C, 2 h, 60%

that sequential placement of each methylene bridge in **3a** led to strain energy (ΔE_s) build-up of 4.4, 19.9 and 49.4 kcal mol⁻¹ (1 cal = 4.184 J), respectively, on the way to **2** and the distances between the methyl group carbon and the bridging carbons were 3.03 Å in **3a**, 3.07 and 3.15 Å in the mono-bridged and 3.35 Å in the di-bridged compound. These features were considered promising enough in the context of the **3a** \rightarrow **2** transformation and we first ventured to develop a short synthesis of 1,5,9-trimethyltriphenylene **3a**.

Dilithium tetrachlorocuprate catalysed cross-coupling reaction between 1,3,5-tris(bromomethyl)benzene 4 and the Grignard reagent derived from 4-bromobut-1-ene furnished the 1,3,5-tripentenylated benzene 5 in one step. Alternatively, the trianion generated from mesitylene 6 on quenching with 4-bromobut-1-ene also furnished 5 in a one-pot operation but in lower yield. The trialkene 5 on exposure to gaseous BF₃ smoothly cyclized² to give the tetracycle 7. 2,3-Dichloro-5,6dicyano-1,4-benzoquinone (DDQ) dehydrogenation of 7 furnished the 1,5,9-trimethyltriphenylene (Scheme 1). In accordance with its symmetry, $3a^+$ exhibited only one methyl singlet and seven lines in the ¹H and ¹³C NMR spectra, respectively.

For further elaboration of **3a** towards **2**, we first tried direct cyclodehydrogenation. Pd/C mediated dehydrogenation of **3a** furnished the mono-bridged compound $8\ddagger (m/z \ 268, M^+)$ in up to 70% yield, with some minor uncharacterized products (*ca.* 15%). Subjecting **8** to further dehydrogenation or **3a** to flash-vacuum pyrolysis (FVP) at higher temperatures was not successful. Taking a cue from the recent success in coran-

Fig. 1 PLUTO diagram of 9

nulene 1 synthesis,^{1b,c} we transformed **3a** to 1,5,9,-tribromomethyltriphenylene **3b** (Scheme 1). When **3b** was subjected to FVP³ at 850 °C, a 20% yield of di-bridged **9**[†] and mono-bridged **8** (87:13) could be realized.§ The structure of **9**⁴ (m/z 266, M⁺) followed from its ¹H NMR data, particularly the presence of two methylene singlets at δ 4.44 and 4.40 and a methyl singlet at δ 3.09 along with the aromatic resonances. This was further corroborated by the ¹³C NMR resonances due to two methylene carbons at δ 40.26 and 39.81 and a methyl group at δ 23.04. A confirmatory X-ray crystal structure determination was carried out and a perspective is shown in Fig. 1.¶

§ Reductive replacement of bromine atom by hydrogen during FVP conditions has been observed before.^{1b}

¶ Crystal data: for C₂₁H₁₄, M = 266.3, monoclinic, space group $P2_1/c$, a = 9.419(2), b = 11.386(2), c = 13.409(3) Å, $\beta = 107.47(2)^{\circ}, V =$ 1372(5) Å⁻³, Z = 4, $D_c = 1.207$ Mg m⁻³, F(000) = 560, $\mu = (Mo-K\alpha)$ 0.073 mm⁻¹, 294 K. No. of data measured 2046, no. of unique reflections 1798, no. of observed reflections with $F \ge 3\sigma(F)$, 1060, no. of parameters 190. Diffraction data were collected on a Siemens R3m/v diffractometer with graphite monochromated Mo-Ka radiation, $(\lambda = 0.71073\text{\AA}, \omega$ -scan) at room temp. between $3 \le \theta \le 45^{\circ}$. Intensity data were corrected for Lorentz and polarization effects. The structure was solved by direct methods (SHELXTL-PLUS⁵) and refined by full-matrix least-squares methods. The final R value was 0.064 ($R_w = 0.068$). Maximum shift/error = 0.001, maximum and minimum peaks in the final Fourier difference synthesis +0.28, -0.21e Å³. Atomic coordinates, bond lengths and angles and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

[‡] All new compounds were characterized on the basis of their ¹H and ¹³C NMR and mass spectroscopic–analytical data. *Selected spectral data*: **3a**: m.p. 123 °C; ¹H NMR (100 MHz, CDCl₃); δ 2.92 (9H, s), 7.26–7.46 (6H, m) and 8.20 (3H, t); ¹³C NMR (25.0 MHz, CDCl₃); δ 26.06, 124.83, 125.71, 131.07, 132.01, 132.30 and 134.30. **8**: m.p. 192 °C; ¹H NMR (200 MHz, CDCl₃); δ 3.13 (3H, s), 3.20 (3H, s), 4.24 (2H, s), 7.46–7.71 (6H, m), 8.62 (1H, d, *J* 8.0 Hz) and 8.87 (1H, d, *J* 7.8 Hz); ¹³C NMR (50 MHz, CDCl₃); δ 25.95, 27.63, 36.60, 122.01, 122.15, 124.76, 125.55, 126.50, 126.55, 130.84, 131.74, 137.43, 139.40 and 142.00. **9**: m.p. 247.5 °C; ¹H NMR (200 MHz, CDCl₃); δ 3.09 (3H, s), 4.40 (2H, s), 4.44 (2H, s), 7.44 (1H, d, *J* 7.3 Hz), 7.58 (1H, d, *J* 7.8 Hz), 7.66 (1H, dd, *J*₁ = *J*₂ = 8.0 Hz), 7.64 (1H, d, *J* 7.3 Hz), 7.58 (1H, d, *J* 7.8 Hz), 7.66 (1H, dd, *J* 7.8 Hz); ¹³C NMR (50 MHz, CDCl₃): δ 23.04, 39.81, 40.26, 122.59, 122.99, 125.12, 127.36, 129.96, 135.20, 137.12, 137.71, 139.18, 142.45 and 144.74. In **8** and **9** several overlapping carbon signals are observed.

1008

Acquisition of 9 from 3b augurs well for further evolution towards 2, although so far we have been unable to confirm its presence in the pyrolysate from 3b. Efforts aimed at obtaining 2 via derivatives of 3a are in progress and will be reported in due course.

G. M. thanks the Indian National Science Academy, New Delhi for the award of a Ramanujan Research Professorship and S. R. S. acknowledges support from CSIR in the form of a Research Associateship.

Received, 18th January 1993; Com. 3/00296I

References

- (a) W. E. Barth and R. G. Lawton, J. Am. Chem. Soc., 1966, 88, 380; (b) L. T. Scott, M. M. Hashemi and M. S. Bratcher, J. Am. Chem. Soc., 1992, 114, 1920; (c) A. Borchardt, A. Fuchicello, K. V. Kilway, K. K. Baldridge and J. S. Siegel, J. Am. Chem. Soc., 1992, 114, 1921.
- 2 P. Canonne and A. Regnault, Tetrahedron Lett., 1969, 243.
- 3 Flash vacuum pyrolyses were carried out on a home-built system similar to that described by H. A. Staab and M. Haenel, *Chem. Ber.*, 1973, **106**, 2190.
- 4 To our knowledge, attempts to prepare dicyclopentatriphenylenes of the type 9 have not been successful so far. However, a di-thia analogue has been reported: see L. H. Klemm, E. Hall, L. Cousins and C. E. Klopfenstein, J. Heterocycl. Chem., 1989, 26, 345.
 5 G. M. Sheldrick, SHELXTL-PLUS Version 4.2, Siemens
- 5 G. M. Sheldrick, SHELXTL-PLUS Version 4.2, Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA, 1990.