1015

Lipophilic Metal (Na, Ti^{III}, Zr^{IV}, Rh^I and Pd^{III}) Complexes derived from the Hybrid Ligands $^{-}$ OR and HOR (R = Me₂PCH₂CBu^t₂); the X-Ray Structures of [TiCl(OCBu^t₂CH₂PMe₂)₂] and trans-[Rh(CO)Cl(PMe₂CH₂CBu^t₂OH)₂][†]

Peter B. Hitchcock, Michael F. Lappert and Iain A. MacKinnon

School of Chemistry and Molecular Sciences, University of Sussex, Brighton, UK BN1 9QJ

From crystalline $[Li(\mu-OCBut_2CH_2PMe_2)_2] \equiv Li(\mu-OR)_2]$ the following crystalline pentane-soluble derivatives have been obtained: ROH 1, $[fiCI(OR)_2]$ and $[Zr(\eta-C_5H_5)_2CI(OR)]$ 4; 1 is a source of the similarly lipophilic crystalline $[Na(\mu-OR)]_2$ and *trans*- $[Rh(CO)CI(ROH)_2]$, and 4 of the heterotrimetallic complexes *trans*- $[M(CO)_nCl_{2-n}\{(RO)Zr(\eta-C_5H_5)_2CI\}_2]$ (M = Rh and n = 1 or M = Pd and n = 0).

 γ -P^{III}-Functionalised alkoxides $-OCR'_2CH_2PR_2$ are an interesting class of hybrid ligand, as they contain both a hard (-O) and a soft (\ddot{P}) nucleophilic centre. One of their applications is in the construction of heterobimetallic (*e.g.* of Zr^{IV} and Rh^I) compounds, which may have a role as catalysts.¹ Another is in the formation of crystalline, lipophilic alkoxides of metals which have a predominantly ionic chem-

istry, as in $[\{M(OCBu_{2}CH_{2}PR_{2})_{n}\}_{m}]$ (M = Li, R = Me or Ph, n = 1, and m = 2;² or M = Y or Nd, R = Me, n = 3, and m = 1).³

We now report further results on $-OCBut_2CH_2PMe_2$ and the parent alcohol 1 which have implications for both aspects. Noteworthy are the following observations. (*i*) Not only the dimeric structure of the crystalline $[Na(\mu-OCBut_2CH_2PMe_2)]_2$ 2, but also its good pentane-solubility, are without precedent for a sodium alkoxide. (*ii*) The crystalline lipophilic complex

[†] No reprints available.

[TiCl(OCBu^t₂CH₂PMe₂)₂] **3** is the first X-ray-characterised monomeric phosphinetitanium(III) complex and also Ti^{III} alkoxide. (*iii*) The compound [Zr(η -C₅H₅)₂Cl(OCBu^t₂-CH₂PMe₂)] **4** behaves as a *P*-centred ligand in the heterotrimetallic complexes *trans*-[M(CO)_nCl_{2-n}{PMe₂CH₂CBu^t₂-OZr(η -C₅H₅)₂Cl]₂] (M = Rh and n = 1 **5**, and M = Pd and n = 0 **6**). (*iv*) Although the alcohol **1** or the phenyl analogue HOCBu^t₂CH₂PPh₂ **7** functions as a tertiary phosphine in

2[Zr(η-C₅H₅)₂Cl(OCBu^t₂CH₂PMe₂)]

Scheme 1 Reagents and solvents (at 25 °C): i, $[NHMe_3]Cl$, OEt_2 ; ii, $2Na[N(SiMe_3)_2]$, C_5H_{12} ; iii, TiCl₃, tetrahydrofuran (THF); iv, 2 $[Zr(\eta-C_5H_5)_2Cl_2]$, THF; v (for 5), $\frac{1}{4}[{Rh(CO)_2(\mu-Cl)}_2]$, PhMe; v (for 6), trans-[PdCl₂(NCPh)₂], C₆H₆; vi, $\frac{1}{4}[{Rh(CO)_2(\mu-Cl)}_2]$, PhMe. Yields refer to isolated crystalline material; the low yields reflect the high C_5H_{12} -solubility of compounds, especially 2–4.

Fig. 1 The molecular structure of $[\dot{T}iCl(OCBu^{1}_{2}CH_{2}\dot{P}Me_{2})_{2}]$ 3 and atom numbering scheme. Selected bond lengths and angles: Ti–Cl 2.366(2), Ti–O(1) 1.841(3), Ti–O(2) 1.843(3), Ti–P(1) 2.600(2), Ti–P(2) 2.591(2) Å; Cl–Ti–O(1) 114.7(1), Cl–Ti–O(2) 113.8(1), Cl–Ti–P(1) 98.49(6), Cl–Ti–P(2) 95.59(6); O(1)–Ti–O(2) 131.5(2), P(1)–Ti–P(2) 165.91(6), O(1)–Ti–P(1) 75.5(1), O(1)–Ti–P(2) 99.1(1), O(2)–Ti–P(1) 98.5(1), O(2)–Ti–P(2) 75.1(1)°.

yielding the crystalline complex *trans*-[Rh(CO)Cl(PMe₂-CH₂CBut₂OH)₂] **8** (or the phenyl analogue **9**), there is a close Rh···HO contact. (ν) The ¹H NMR solution spectrum in CDCl₃ of **6** or **8** shows virtual coupling for both the *P*-bound CH₃ groups and the CH₂ group, each being a 1:2:1 triplet.‡ (ν i) Single crystal X-ray data are reported for **3** (Fig. 1) and **8** (Fig. 2);§ the quality of the data for **2** was adequate to establish its structure as being that shown in Scheme 1 (similar to that found for the lithium analogue²).‡ (ν ii) The EPR spectrum of **3** in toluene at 298 K revealed a triplet signal, g_{av} 1.9626, $a(^{31}P)$ 20 G, comparable to that for [TiCl₃(PEt₃)₂], g_{av} 1.9626, $a(^{31}P)$ 22.82 G.⁴

Fig. 2 The molecular structure of *trans*- $[Rh(CO)Cl(PMe_2CH_2C-But_2OH)_2]$ 8 and atom numbering scheme. Selected bond lengths and angles: Rh–Cl \blacksquare Rh–CO (disordered) 2.366(7), Rh–P 2.327(3), Rh···OH 3.8, Rh···H 2.68, O···Cl 3.29, Cl···H 2.66 Å; Cl–Rh–P (\equiv OC–Rh–P) 88.9(2)°.

[‡] Selected NMR spectroscopic data [³¹P at 34.2 MHz (δ rel. to 85% aq. H₃PO₄), ¹H at 80 MHz in C₆D₆, C₇D₈, or CDCl₃ (**6**, **8**, and **9**) at 305 K]. 1: ³¹P{¹H} δ −57.0; ¹H δ 2.28 [OH, d, J(¹H−³¹P) 7.4 Hz]. 2: ³¹P{¹H} δ −59.1 (br); ¹H: δ 1.99 [CH₂, d, ²J(¹H−³¹P) 6A Hz]. 4: ³¹P{¹H} δ −54.0; ¹H δ 2.00 [CH₂, d, ²J(¹H−³¹P) 6 Hz]; **5**: ³¹P{¹H} showed three A₂X patterns (δ −2.7, −4.1 and −5.4) with rel. intensities 3:3:1 and ¹J(³¹P−¹⁰³Rh) ~120 Hz (indicative of three rotamers one of which has non-equivalent P nuclei); ¹H δ 1.97 (CH₂, t) and 1.62 (CH₃, t). **6** (sparingly soluble): ³¹P{¹H} only a single signal, δ −5.0; ¹H δ 2.22 (CH₂, t) and 1.56 (CH₃, t). 7: ³¹P{¹H} δ −21.5; ¹H δ 2.24 [OH, d, J(¹H−³¹P) 5.9 Hz]. **8**: ³¹P{¹H} δ −5.0 [d, ¹J(³¹P−¹⁰³Rh) 115 Hz; ¹H δ 2.75 (OH), 2.34 (CH₂, t, J 4.6 Hz), and 1.60 (CH₃, t, J 4.6 Hz). ⁹:³¹P{¹H} 69.8 [d, ¹J(³¹P−¹⁰³Rh) 168 Hz; ¹H δ 3.02 [OH, d, J(¹H−¹⁰³Rh) 2.7 Hz].

§ Crystal data [T 295 K, Enraf-Nonius CAD-4 diffractometer, no absorption corrections, full-matrix least-squares, refinement with non-hydrogen atoms anisotropic, H atoms fixed, $w = 1/\sigma^2(F)$]; direct method for 2 and heavy atom method for 3 and 7.

2 C₂₄H₅₂Na₂O₂P₂. \dot{M} = 480.6, orthorhombic, space group *Pna*2₁, *a* = 15.530(5), *b* = 8.397(7), *c* = 22.365(8) Å, *U* = 2916.5 Å³, *F*(000); *Z* = 4, *D_c* = 1.09 g cm⁻³; μ (Mo-K α) = 1.9 cm⁻¹, specimen 0.6 × 0.6 × 0.4 mm, 1262 unique reflections for 2 < θ < 18°, 709 reflections with $|F^2| > \sigma(F^2)$ used in the refinement where $\sigma(F^2) = [\sigma^2(I) + (0.04I)^2]^{\frac{1}{2}}/Lp$; *R* = 0.130, *R*_w = 0.155.

8 C₂₅H₅₂ClO₃P₂Rh, $\dot{M} = 601.0$, monoclinic, space group $P2_1/c$, a = 9.819(5), b = 13.313(9), c = 12.350(8) Å, $\beta = 111.00(5)^\circ$, U = 1507.0 Å³, F(000); Z = 2, D_c 1.32 g cm⁻³; μ (Mo-Kα) 7.7 cm⁻¹; specimen 0.2 × 0.2 × 0.1 mm, 3085 unique reflections for $2 < \theta < 25^\circ$, 1491 with $|F^2| > \sigma(F^2)$ used in the refinement where $\sigma(F^2) = [\sigma^2(I) = (0.04I)^2]^4/Lp$; R = 0.071, $R_w = 0.081$. The molecule lies on an inversion centre with the Cl⁻ and CO ligands disordered between *trans* sites.

Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1. J. CHEM. SOC., CHEM. COMMUN., 1993

Routes to compounds 1–9 are summarised in Scheme 1. Each compound gave satisfactory microanalytical and NMR spectroscopic (except for the paramagnetic 3) results.[†] The sodium alkoxide 2 did not show ${}^{31}P{-}^{23}Na$ coupling (its observation would have been unprecedented), in contrast to the ${}^{1}J({}^{31}P{-}^{7}Li)$ observed for the lithium analogue.²

Crystalline [TiCl(OCBu¹₂CH₂PMe₂)₂] **3** is monomeric, having a distorted trigonal bipyramidal geometry about the metal, with axial phosphines, P(1)–Ti–P(2) 165.91(6)°. Crystalline *trans*-[Rh(CO)Cl(PMe₂CH₂CBu¹₂OH)₂] **8** has square planar rhodium; the molecule lies on an inversion centre with the Cl⁻ and CO ligands disordered between *trans*-sites; the Rh–Cl, Rh–C, and Rh–P bond lengths are unexceptional, but there are unexpected close Rh…HO and OH…Cl contacts. The related complex *trans*-[Rh(CO)Cl-(PPh₂CH₂CBu¹₂OH)₂] **9**, unlike **8**, showed $J(^{1}H-^{103}Rh)$ of 2.7 Hz for $\delta(OH)$ 3.02, indicating that the chelation was maintained in solution.

Work on $-OCBut_2CH_2PR_2$ (R = Me or Ph) dates back to 1986;² as well as the derived Li,² Y^{III},³ and Nd^{III} alkoxides, a number of Zr^{IV} analogues¹ have been made. Related ligands $-OCR'_2CH_2PR_2$ include those with R = Ph and R' = CF₃ (Ni^{II}, Pd^{II}, Pt^{II})⁵ or Me (Zr^{IV}),¹ while Ph₂PCH₂CMe₂OH has been employed as a *P*-centred ligand in Pt^{II} chemistry.⁶

The amphiphilic ligating character of $-OCBut_2CH_2PMe_2$ and of its conjugate base the parent alcohol have much further potential utility in their coordination chemistry; it is interesting that both ligands, even possibly the alcohol [the small value of $J(^{31}P^{1}H)$ ‡ in 1 and 7 may alternatively be due to a four-bond coupling], can function in a chelating fashion.

We thank SERC and ICI plc for a CASE award to I. A. M.

Received, 9th March 1993; Com. 3/01364B

References

- 1 S. M. Baxter and P. T. Wolczanski, Organometallics, 1990, 9, 2498.
- D. M. Eugelhardt, J. M. Harrowfield, M. F. Lappert, I. A. MacKinnon, B. H. Newton, C. L. Raston, B. W. Skelton and A. H. White, J. Chem. Soc., Chem. Commun., 1986, 846.
- 3 P. B. Hitchcock, M. F. Lappert and I. A. MacKinnon, J. Chem. Soc., Chem. Commun., 1988, 1557.
- 4 C. D. Schmulbach, C. H. Kolich and C. C. Hinckley, *Inorg. Chem.*, 1972, 11, 2841.
- 5 C. D. Montgomery, N. C. Payne and C. J. Willis, *Inorg. Chem.*, 1987, 26, 519; and refs. therein.
- 6 A. W. G. Platt and P. G. Pringle, J. Chem. Soc., Dalton Trans., 1989, 1193.