Oxygen Exchange between Adsorbed C02 and MgO Surfaces

Yasunori Yanagisawa, Hirohumi Shimodama and Akinori Ito

Department of Physics, Nara University of Education, Takabatake-cho, Nara 630, Japan

By using temperature-programmed desorption gas analysis, thermal desorption of C¹⁶O₂ and C¹⁸O¹⁶O gases after C1802 adsorption on MgO powders was observed in the temperature range 350-1000 **K,** suggesting double oxygen exchange reactions to occur on the surfaces.

Magnesium oxide is recognised to be a catalyst for hydrogenation and oxidation of \overline{CO} , and H-D exchange between \overline{CH}_4 and D_2 , properties which are explained as resulting from the basic nature of the surface.1 EPR measurements at room temperature have shown that $CO₂$ molecules interact with surface F-type centres on UV-irradiated MgO powder to form $CO₂$ adsorbates.² Recently, we have reported oxygen exchange reactions between CO and defect MgO surfaces3 and between O_2 and UV-irradiated MgO.⁴ More recently, $CO₂$ adsorption on an MgO (100) surface was investigated below room temperature under ultra-high vacuum, but only weakly physisorbed CO₂ was observed.⁵ Thus, while it is possible that oxygen exchange reactions may occur between $CO₂$ and defect MgO surfaces, this kind of reaction on alkaline-earth oxides is hitherto unknown. In this work, we report on the thermal desorption (TD) of $C^{18}O_2$, $C^{16}O^{18}O$ and $C^{16}O_2$ from $C^{18}O_2$ adsorbed on MgO powder.

MgO powder (Specpure; Johnson-Matthey) was preheated at 1150 K in a quartz tube of diameter *5* mm attached to a vacuum system. The base pressure was about 7×10^{-9} Torr. After being cooled to room temperature, the sample was exposed to $\rm{C^{18}O_{2}}$ gas (99% purity) for the desired time with an exposure in the range 10^2 to 10^4 L ($1 \text{ L} = 10^{-6}$ Torr s) in the dark. Temperature programmed desorption (TPD) measurements were carried out up to 1150 K with a heating rate of *0.5* $K \simeq$ ¹ using a quadrupole mass spectrometer (ULVAC, MSQ-400). Peaks with *mlz* in the ranges 28-36 and 44-48 were repetitively scanned.

After several cycles of exposure and TPD, reproducible TD curves of $C^{16}O_2$, $C^{16}O^{18}O$ and $C^{18}O_2$ gases were obtained. The TPD profiles of $C^{16}O_2$, $C^{16}O^{18}O_2$ and $C^{18}O_2$ gases after 3000 L C¹⁸O₂ exposure at room temperature are shown in Fig. 1. TDs of $C^{16}O_2$ and $C^{16}O^{18}O$ have broad peaks at 800 and 750 K, respectively with shoulders at about 900 K, while the TD of adsorbed $C^{18}O_2$ has a weak peak at about 370 K and almost negligible desorption above 800 K. Thus, thermal exchange of adsorbed C02 molecules with lattice oxygen atoms takes place on the MgO surface. A small amount of C160 TD *(ca.* 10% of the $C^{16}O_2$ TD) was observed in the temperature range 700-900 K with a maximum at about 850 K, which seemed to be a fragment product of desorbed $C^{16}O_2$. No TD evidence for oxygen molecules was obtained with or without $C^{18}O_2$ exposure. The temperature maximum of the $C^{16}O_2$ TD peak did not change on increasing the exposure, suggesting that the TD may obey first-order kinetics. The TD amounts of $C^{16}O₂$

and C160180, which correspond to the areas under the respective TD peaks, increased linearly with exposure up to 2000 L, near-saturation being reached around 300 L. The ratio of $C^{16}O_2$ and $C^{16}O^{18}O$ TD amounts is about 1:0.25, and was almost independent of exposure above 2000 L.

The initial rise method based on the Arrhenius plot of the $C^{16}O_2$ TD intensity leads to a rough estimate of the activation

Fig. 1 TPD profiles of *(a)* $C^{18}O_2$, *(b)* $C^{16}O^{18}O$ and *(c)* $C^{16}O_2$ gases after 3000 L exposure to C¹⁸O₂ from MgO powder baked at 1150 K under ultra-high vacuum

energy for desorption (E_d) of *ca.* 130 kJ mol⁻¹. This large E_d suggests that the bond interchange causing the exchange may occur in the chemisorption state, giving the $C^{16}O_2$ and C¹⁶O¹⁸O TD peaks.

For $C^{18}O_2$ adsorbed on titania surfaces, no $C^{16}O_2$ was desorbed in the temperature range 150-700 K.6 Based on the present TPD results, the oxygen isotope exchange process between adsorbed $C^{18}O_2$ molecules and surface ^{16}O atoms may take place as follows. Recently, Freund *et al.* reported that O^{2-} anion may be converted into O^- at cation vacancies in MgO crystals and form the peroxy anion O_2^2 with the nearby $O₋$ anion without the need for ionization radiation.⁷ Thus, one may suppose the generation of similar peroxy type ions, $(^{16}O_5)_{2}^{2-}$, on defect MgO surfaces, and adsorbed $C^{18}O_2$ may interact with the peroxy ions to form tentative intermediate rolling carbonate ions during the exposure or thermal desorption run. Few peroxy-type anions seem to be present on a (100) flat surface, where only physisorbed $CO₂$ was formed.⁵ The dissociation energy of the O_2 ⁻ CO₂ bond is about 90 kJ mol^{$-1,8$} which seems to be comparable with the observed E_d value. A simple CO_3 type intermediate may not explain the

large TD of double exchanged $CO₂$ molecules. The actual exchange methanism, however, is not yet clear.

Received, 19th January 1993; Corn. 3/00339F

References

- 1 H. Hattori, in *Adsorption and Catalysis on Oxide Surfaces,* ed. M. Che and G. C. Bond, Elsevier, Amsterdam, 1985, **pp.** 319-330.
- 2 J. H. Lunsford and J. P. Jayne, *J. Phys. Chem.,* 1964,69,2182; P. Meriaudeau, Y. B. Taarit, J. C. Vedrine and C. Naccache, *J. Chem.* Soc., *Faraday Trans. 1,* 1976, 72, 76.
- 3 R. Huzimura, Y. Yanagisawa, K. Matsumura and **S.** Yamabe, *Phys. Rev. B, Condens. Matter,* 1990, 41, 3786.
- 4 Y. Yanagisawa, R. Huzimura, K. Matsumura and **S.** Yamabe, *Surf. Sci.,* 1991, 242, 513.
- 5 D. L. Meixner, D. **A.** Arthur and **S.** M. George, Surf. *Sci.,* 1992, 261, 141.
- 6 G. B. Raupp and **J. A.** Dumesic, *J. Phys. Chem.,* 1985, 85,5240. *7* M. M. Freund, **F.** Freund and F. Batllo, *Phys. Rev. Lett.,* 1989,63, 2096.
- 8 **A. A.** Viggiano, R. A. Morris and **J.** F. Paulson, *J. Chem. Phys.,* 1989, 91, 5855.