A Highly Convergent Strategy Towards Rapamycin. Stereoselective Construction of the C8-C18 Fragment

A. D. Piscopio, N. Minowa, T. K. Chakraborty, K. Koide, P. Bertinato and K. C. Nicolaou*

Department of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA Department of Chemistry, The Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, California 92037, *USA*

A strategy for a total synthesis of the immunosuppressant agent rapamycin **1** is outlined and the stereoselective construction of a suitably functionalized **C8-C18** fragment 2 is described.

Rapamycin **1** (Scheme 1) is a highly functionalized, 31 membered macrocyclic natural product^{1.2} with an impressive biological profile *.3* Isolated from *Streptomyces hygroscopicus1* and fullv characterized by X-ray crystallographic and NMR

 $8: C^{35}$ -C⁴² Fragment

Scheme 1 Strategic bond disconnections and retrosynthetic analysis of rapamycin **1.** Definition of requisite fragments for a total synthesis. PMB = p-methoxybenzyl; TIPS = triisopropylsilyl; TBS = *tert*butyldimethylsilyl; TBDPS = tert-butyldiphenylsilyl.

analyses,² this compound exhibits potent immunosuppressive properties and interferes with the cell cycle, acting both as a cytotoxic and as an antibiotic agent.3 In this communication we outline a highly convergent stragegy towards this challenging synthetic target⁴ and describe a stereoselective construction of a fully functionalized C⁸-C¹⁸ fragment 2 (Scheme 2).

Scheme 1 depicts the strategic bond disconnections and retrosynthetic analysis of rapamycin **1.** Thus, following disconnections *a-d* (structure **1)** and functionalizing appropriately leads to fragments **2-5** (Scheme 1). Further disconnections of advanced intermediate **5** (at positions *e* and *f)* unravel fragments **6-8** (Scheme 1) as potential intermediates for this construction. The highly convergent nature of this strategy and its flexibility for ring construction (each of the five disconnections *a-e* could, in principle, be used in the macroring formation) bode well for an expedient and efficient total synthesis of **1.**

Scheme 2 presents a concise and stereocontrolled synthesis[†] of the C8-C18 fragment **2.** Thus, the Weinreb amide **10,** obtained from the readily available carboxylic acid **9,\$** was coupled with the vinyllithium reagent derived from **115** to afford enone **12** in 70% yield. Reduction of this enone with LiAlH₄-LiI at -100 °C according to the method of Mori and Suzuki⁵ gave a single alcohol (86%) which was methylated to afford compound **13** in 94% yield. Removal of the acetonide group from **13** gave the corresponding diol (93%) which was selectively mesylated and converted to epoxide **14** by standard methods (Scheme 2, 64% overall yield). The higher order cuprate6 derived from iodide **151** reacted smoothly with epoxide **14** to afford, after silylation and silicon-iodine exchange,7 vinyl iodide **16** in 84% overall yield.

Liberation of the primary alcohol in **16** with DDQ **(94%)** followed by Swern oxidation led to aldehyde **17** (98%). Evans aldol condensation **of** this aldehyde with the boron enolate derived from compound 18|| led stereoselectively to the

\$ Compound **9** was prepared from L-ascorbic acid according to modifications of literature methods: **A.** Tanaka and K. Yamashita, *Synthesis,* 1987,570; R. Saibaba, M. **S.** P. Sarma and E. Abushanab, *Synth. Commun.,* 1989, **19,** 3077.

5 Vinyl iodide **11** was prepared from l-trimethylsilylpropyne by hydrostannylation followed by treatment of the corresponding vinylstannane with iodine: H. **X.** Zhang, F. Guibe and G. Balavoine, *J. Org. Chem.,* 1990, **55,** 1857.

1 Primary iodide **15** was prepared form (S)-(+)-methyl 3-hydroxy-2 methylpropionate by p-methoxybenzyl ether formation, LiAlH4 reduction, tosylation, and iodide displacement.

The compound 18 was utilized in order to deliver a single diastereoisomer, which allowed for convenient characterization and purification procedures. This compound was prepared from bromoacetic acid by displacement with the sodium derivative of p-methoxybenzyl alcohol followed by acid chloride formation and condensation with the oxazolidinone derived from $(1S, 2R)$ -(+)-norephedrine: D. **A.** Evans, **S.** W. Kaidor, T. K. Jones, **J.** Clardy and T. J. Stout, *J. Am. Chem. Soc.,* 1990, **112,** 7001.

i. All new compounds exhibited satisfactory spectral and analytical and/or exact mass data. Yields refer to chromatographically and spectroscopically homogeneous materials.

Scheme 2 Synthesis of C⁸-C¹⁸ fragment 2. Reagents and conditions: (a) DCC (1 equiv.), NHMe(OMe)·HCl (1.2 equiv.), Et₃N (1.2 equiv.), Scheme 2 synthesis of Co-Co Haginent 2. Reagents and conditions. (a) DCC (1 equiv.), NTINE(ONE) HCI (1.2 equiv.), Et₃IV (1.2 equiv.), CH₂Cl₂, 25 °C, 2 h, 70%; (b) 11 (2 equiv.), Bu'Li (4 equiv.), Et₂O, -78 °C, 0.5 -100 to 0 °C, 15 min, then 14 (1 equiv.), -30 to 0 °C, 0.5 h, 88%; (i) TIPSOTf (1.2 equiv.), 2,6-lutidine (1.5 equiv.), CH₂Cl₂, 0 °C, 20 min, 98%; (j) NIS (6 equiv.), THF, 25 °C, 24 h, 97%; (k) DDQ (1.2 equiv.), CH₂Cl₂-H₂O (19:1), 25 °C, 1 h, 94% (l) (COCl)₂ (1.5 equiv.), DMSO (3.2 equiv.), Et₃N (6 equiv.), CH₂Cl₂ -78 to 0 °C, 0.5 h, 98%; then DDQ (2 equiv.), HCH₂Cl₂-H₂O (19:1), 25 °C, 12 h, 80%; (p) LiOH (5 equiv.), THF-MeOH-H₂O (3:1:1), 0 °C, 1 h, 95%.
DCC = dicyclohexylcarbodiimide; DMF = dimethylformamide; CSA = camphorsulfonic acid; Ms = MeSO

tetrahydrofuran; NIS = N-iodosuccinimide; DDQ = 2,3-dichloro-5,6-dicyano-1,4-benzoquinone; DMSO = dimethyl sulfoxide; DMAP = 4-dimethylaminopyridine.

syn-product 19 (88%). The chiral auxiliary was removed by $LiOH-H₂O₂$ treatment and the acetoxy methyl ester 20 was produced by sequential exposure to $CH₂N₂$, Ac₂O-DMAP, and DDQ (69% overall yield). Finally, the targeted C⁸-C¹⁸ fragment 2^{**} was prepared by alkaline hydrolysis of 20 using aqueous LiOH $(95\% \text{ yield})$.

The described chemistry points the way to a rapamycin total synthesis and to a possible entry into a variety of designed molecules of this class. The following communication⁸ describes the construction of the remaining requisite fragments and their elaboration to an advanced C²¹-C⁴² key intermediate.

This work was financially supported by the National Institutes of Health, by the University of California, San Diego, and by The Scripps Research Institute. A. D. P. is a recipient of an NIH Fellowship, 1990-1992. N. M. and T. K. C. are visiting scientists from Meiji Seika Kaisha Ltd, Japan and the Indian Institute of Chemical Technology, Hyderabad, respectively.

Received, 15th January 1993; Com. 3/00254C

References

- 1 Isolation: C. Vézina, A. Kudelski and S. N. Sehgal, J. Antibiot., 1975, 28, 721; S. N. Sehgal, H. Baker and C. Vézina, J. Antibiot., 1975, 28, 727
- 2 Structure: D. C. N. Swindells, P. S. White and J. A. Findlay, Can. J. Chem., 1978, 56, 2491; J. A. Findlay and L. Radics, Can. J. Chem., 1980, 58, 579.
- 3 S. L. Schreiber, Chem. Eng. News, 1992, 69, 22; M. K. Rosen and S. L. Schreiber, Angew. Chem., Int. Ed. Engl., 1992, 31, 384.
- 4 Previous synthetic approaches to rapamycin: M. J. Fisher, C. D. Myers, J. Joglar, S.-H. Chen and S. J. Danishefsky, J. Org. Chem., 1991, 56, 5826; S.-H. Chen, R. F. Horvath, J. Joglar, M. J. Fisher and S. J. Danishefsky, J. Org. Chem., 1991, 56, 5834; M. R. Hale, and A. H. Hoveyda, J. Org. Chem., 1992, 57, 1643; S. D. Meyer, T.
Miwa, M. Nakatsuka and S. L. Schreiber, J. Org. T. Miwa, M. Nakatsuka and S. L. Schreiber, J. Org. T. Min., 1992, 57, 5058; D. Romo, D. D. Johnson, L. Plamondon, T. Miwa and S. L. Schreiber, J. Org. Chem., 1992, 57, 5060.
- Y. Mori and M. Suzuki, Tetrahedron Lett., 1989, 30, 4383.
- 6 B. H. Lipshutz, M. Koerner and D. A. Parker, Tetrahedron Lett., 1987, 28, 945.
- S. D. Burke, A. D. Piscopio and M. E. Kort, unpublished results. We thank Professor Burke for allowing us to use this technology prior to publication.
- 8 K. C. Nicolaou, P. Bertinato, A. D. Piscopio, T. K. Chakraborty and N. Minowa, following communication.

^{**} Selected data for 2: R_F 0.05 (silica, 10% MeOH in CH₂Cl₂); [α]_D²⁰ -4.1 (c 1.0, CHCl₃); IR (neat); $v_{\text{max}}/\text{cm}^{-1}$ 3410, 2941, 2867, 1729, 1624, 1462, 1379, 1271, 1256, 1095, 883 and 759 cm⁻¹; ¹¹H NMR (500 MHz, CD₃SOCD₃): δ 6.35 (d, J 1.0 Hz, 1 H, 18-H), 3.98 (d, J 3.0 Hz, 1 H, 9-H), 3.90–3.83 (m, 1 H, 14-H), 3.80 (dd, \hat{J} 4.1, 8.4 Hz, 1 H, 16-H), 3.38 (dd, \hat{J} 3.0, 7.3 Hz, 1 H, 10-H), 3.33 (s, 3 H, 16-OMe), 1.73 (ddd, J 4.5, 8.6, 13.6 Hz, 1 H, CH), 1.65 (d, J 1.0 Hz, 3 H, 17-Me), 1.60-1.10 (m, 6 H, CH, CH₂), 1.05-0.90 (m, 21 H, SiCHMe₂) and Calc. for C₂₃H₄₄O₆SilCs₂ (M - H⁺ + 2Cs⁺): 837.0061, found m/z 837.0102.