Laser-jet Photolysis of 1,8-Bis(substituted-methyl)naphthalenes: the Effect of Heteroatom Leaving Groups on the Two-photon C-C Bond Formation

Akihiko Ouchi* *a* **and Waldemar Adam** *^b*

a National Institute of Materials and Chemical Research, Tsukuba, lbaraki 305, Japan ^bInstitute of Organic Chemistry, University of Wiirzburg, Am Hubland, D-8700 Wurzburg, Germany

The formation of acenaphthene **4** by laser-jet photolysis of 1,8-bis(phenoxymethyI)- **(la),** 1,8-bis(phenylthiomethyl)- **(1 b)** and 1,8-bis(phenylselenomethyl)-naphthalene **(Ic)** strongly depends on the hetroatom of the leaving group; the increasing order of naphthalene consumption was **Ic** = **Ib** > **la,** whereas that for the formation of **4** was **Ic** > **la** > **lb.**

The laser-jet technique has provided an effective means for the study of two-photon chemistry.1 In the laser-jet photolysis of **1,8-bis(halomethyl)naphthalenes** we have noticed a significant dependence on the leaving group *(i.e.* $Br \gg Cl$) in the two-photon reaction for the formation of acenaphthene.[†] Unfortunately, secondary reactions of the highly reactive free halogen atoms, which are generated in the photolysis, have prevented us from exploring the mechanistic details of this interesting two-photon process. For this reason, we have conducted the laser-jet photolysis of 1 ,8-bis(phenoxymethyl)- **(la),** 1,8-bis(phenylthiomethyl)- **(lb)** and 1,8-bis(phenylselenomethy1)-naphthalene **(lc),** (Scheme 1) which liberate the less aggressive PhO*, PhS' and PhSe' radicals. We report herein our photomechanistic investigation on this remarkable two-photon C-C bond formation process, in which the consumption of the naphthalenes **1** and the formation of acenaphthene **4** strongly depend on the radical-centred heteroatom leaving group.

The laser-jet photolysis was conducted under an argon atmosphere by using the published apparatus.¹ The Ar-ion laser beam [Coherent, Innova 100-20; output energy distribution: 333 nm (20%), 351 nm (40%) and 364 nm (40%)] was focused by a quartz convex lens $(f = 80 \text{ mm})$. The diameter of the capillary employed for the free-falling liquid stream was 100 μ m and the flow rate 2.0 ml min⁻¹, which was maintained by means of a Bischoff HPLC 2200 pump. The photolyses of **la-c** were conducted in acetonitrile $(10^{-4} \text{ mol dm}^{-3})$ with and without benzophenone sensitization.

Two types of the laser-jet photolyses were used: type **i** involved direct photolysis and type **ii** benzophenone-sensitized irradiation. As shown in Fig. 1, almost no reaction took place for 1a, b on direct photolysis‡ (type *i* mode). This is due to the lack of the UV absorption of **la, b** at the available laser emissions. However, **lc** gave a significant amount of **4** on direct photolysis (13.4%, 90% conversion, type **i** mode). This is a consequence of the red-shifted absorption of **lc** at the employed laser emissions due to the phenylselenomethyl chromophore. In the benzophenone-sensitized reactions (type **ii** mode), the consumption of the starting materials and the formation of **4** were observed for all the naphthalenes **la-c.**

As shown in Table 1, in the case of the irradiation of **lc** in the presence of benzophenone (type **ii** mode), 40% of the first-step photolysis $\mathbf{1c} \rightarrow 2c$ (Scheme 1) proceeded by sensitization and the rest by the direct process because a 1.7-fold increase in the consumption of **lc** was observed in the sensitized reaction. The second-step photolysis $2c \rightarrow 3c$ proceeded only by the direct photolysis, which follows from the fact that the efficiency factors of the formation of **4** are the

t The yield of **4** was 8.1% (61% conversion) for the bromine derivative: W. Adam and A. Ouchi, *Tetrahedron Lett.,* 1992, **33,** 1875; practically no **4** was formed from the chlorine derivative: W. Adam and A. Ouchi, unpublished results.

same within the experimental error as those for the consumption of **lc** (Table 1). This implies that benzophenone sensitization is not involved in the second step. In the case of **la, b** the efficiency factors are not available because these substrates are inert towards direct photolysis.

The consumption of the starting materials decreased in the order **lc** $(98\%) \approx 1$ **b** (98%) > **la** (62%) (at the fifth cycle). We postulate that the more efficient consumption of **lb, c** compared with **la,** initiated through the cleavage of the C-XPh bond (step $1 \rightarrow 2$ in Scheme 1) is due to the more efficient intersystem crossing from the $S_1(\pi,\pi^*)$ to the $T_1(\pi,\pi^*)$ of the naphthalene chromophore through the heavy-atom effect,^{2.3§} and successive intramolecular energy transfer to the cleaving C-XPh bonds.

In contrast to the consumption of the starting materials **1,** an irregular trend was observed in the formation of product **4** as a function of the heteroatom leaving group, *i.e.* **1c** (12.3%) > **1a** (9.5%) > **lb** *(5.5%)* (at the fifth cycle).

This unusual dependence of the yield of acenaphthene formation on the nature of the leaving group reflects the efficiency of the second step photolysis $2 \rightarrow 3$ (Scheme 1). Clearly, several factors must interplay to give rise to such a complex order, in which the phenoxy-substituted derivative **lc** falls out of line. MO calculations¹ suggest that the bridged monoradicals **2'** participate. For example, the heats of formation were calculated to be 64 and 90 kcal mol⁻¹ (1 cal = 4.184 J) for **2a** and **2a',** 104 and 92 kcal mol- *1* for **2b** and **2b'** and 81 and 58 kcal mol-1 for **2c** and **2c'.** Thus, significant stabilization of the monoradicals **2b, c** is derived from the bridged structures **2b', c'** (for the phenylseleno-substituted radical **2c'** bridging is more effective than for the phenylthiosubstituted radical **2b'),** but substantial destabilization is predicted for the bridged phenoxy-substituted species **2a'.** Under the premise that efficient intermolecular energy transfer in the π, π^* -excited monoradical 2 from the naphthalene chromophore to the C-XPh bond and subsequent cleavage of the latter to generate the non-Kekul6 diradical **3** (Scheme 1) require a coplaner conformation of the C-XPh

§ The first bond cleavage proceeds from the triplet state.^{3,4}

7 Calculated by using PM3 method in the MOPAC version 6.01.

 \ddagger Direct photolysis of **1a-c** through the $S_2(\pi,\pi^*)$ state by a KrF excimer laser (248 nm), however, gave significant yields of **4** for all compounds: A. Ouchi, **H.** Moriyama, H. Niino and A. Yabe, *55th Autumn Annual Meeting of the Chemical Society of Japan, Preprints II,* 4W24, 1987, p. 826.

Number of laser-jet cycles

Fig. 1 The consumption of $1a-c$ (O, \Box) and the formation of 4 (\bullet, \blacksquare) as a function of the number of laser-jet cycles; O , \bullet represent direct photolysis (type **i** mode) and \Box , **in** the presence of 10^{-3} mol dm⁻³ benzophenone (type **ii** mode); argon ion laser power: 3.5 W

Table 1 Efficiency of the consumption of **lc** and formation of **4** for direct and benzophenone (BP)-sensitized laser-jet photolyses"

	Consumption of 1c			Formation of 4		
Laser-jet cycles	Without $BP(\%)$	With BP (%)	Efficiency factor ^b	Without $BP(\%)$	With BP (%)	Efficiency factor ^b
	$35.9 + 1.9$	$60.3 + 2.1$	1.7	5.4 ± 0.4	$9.1 + 0.8$	1.7
	71.2 ± 3.1	89.5 ± 1.0	1.3	$11.5 + 0.2$	12.4 ± 0.7	1.1
	90.6 ± 3.2	98.3 ± 0.9	1.1	13.4 ± 0.6	12.3 ± 0.7	1.0

^{*a*} Reaction conditions: MeCN as solvent, 3.5 W laser power, 2.0 ml min⁻¹ flow rate, 100 μ m capillary, 10⁻⁴ mol dm⁻³ 1c, 10-3 mol dm-3 **BP.** *b* Efficiency factor is defined as the ratio of **lc** or 4 with and without BP.

bond with the naphthalene π -system for maximum orbital overlap, significant contributions by the bridged structure 2' should be disadvantageous for the photolysis step 2 (or $2'$) \rightarrow **3.** Consequently, in the case of the π, π^* -excited phenoxysubstituted monoradical 2a, for which bridging to 2a' is unlikely, the above favourable conformation of the C-OPh bond is unencumbered and its rupture feasible. This line of argument would imply, however, that the phenylseleno-substituted monoradical 2c' should in view of best bridging be the least efficient in the cleavage step $2c$ (or $2c'$) \rightarrow 3c. Presumably the expectedly large selenium heavy-atom effect in the intramolecular energy transfer for the π, π^* -excited monoradical 2c is the overriding factor, so that the cleavage order $2c'$ $2a > 2b'$ and thus the observed order in the formation of acenaphthene $1c > 1a > 1b$ obtains. Time-resolved laser flash photolysis studies should be of interest to clarify these complex photomechanistic features of the novel two-photon C-C bond-forming process documented here in the laser-jet photolysis of the naphthalenes 1.

We thank the Deutsche Forschungsgemeinschaft and the

Fonds der Chemischen Industrie for generous financial support, and Dr M. Sugie for computational help. **A.** 0. wishes to express his gratitude to the **A.** von Humboldt Foundation for a research fellowship (1991).

Received, 30th November 1992; Corn. 2/06403K

References

- 1 R. M. Wilson, K. A. Schnapp, K. Hannemann, D. M. Ho, H. R. Memarian, A. Azadnia, A. R. Pinhas and T. M. Figley, *Spectrochim. Acta, Part A,* 1990,46,551; R. M. Wilson, W. Adam and R. Schulte Oestrich, *Spectrum,* 1991, 4, **8.**
- 2 D. Huppert, **S.** D. Rand, A. H. Reynolds and P. M. Rentzepis, *J. Chem. Phys.,* 1982, 77, 1214.
- 3 E. F. Hilinski, D. Huppert, D. F. Kelley, **S.** V. Milton and P. M. Rentzepis, *J. Am. Chem.* Soc., 1984, 106, 1951
- 4 L. **J.** Johnston and **J.** C. Scaiano, *J. Am. Chem. SOC.,* 1985, 107, 6368; D. F. Kelley, **S.** V. Milton, D. Huppert and P. M. Rentzepis, *J. Phys. Chem.,* 1983,87,1842; K. Tokumura, M. Udagawa and M. Itoh, *J. Phys. Chem.,* 1985, **89,** 5147.