Formal Preparation of Semisynthetic Analogues of the Cholesterol-lowering Agent Mevinolin

Derrick L. J. Clive* and Chengzhi Zhang

Chemistry Department, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

The cholesterol-lowering agent mevinolin **1** has been degraded to the enone **4,** which had previously been synthesized and converted into mevinolin **1,** compactin **2** and 3-ethylcompactin **3.**

Mevinolin **11** and compactin **22** are prominent and commercially important members of a group of related substances that lower blood levels of cholesterol, especially low density lipoprotein cholesterol-the form of the steroid believed to be most involved in the development of atherosclerosis.3 Compounds **1** and **2** are lead substances for the design of other cholesterol-lowering drugs.3 **As 1** is significantly (three- to five-fold) more powerful than **2Ia,** it is clear that the level of biological activity† can be altered by changes to ring *A* and, in this context, a total synthesis of **1-3** was developed4 *via* the common intermediate **4.** During the synthetic work it was realized that compound **4** might be accessible by degradation of natural **1** or **2;** attachment of different ring *A* units (by the

⁺ Organ specificity may also be changed by structural modifications.

Scheme 1 *Reagents and conditions:* i, acetone, $TsOH·H₂O$ (Ts = p -MeC₆H₄SO₂), (82%); ii, Bu^tOOH, VO(acac)₂ (Hacac = pentane-2,4-dione), PhH, $6-25$ °C, (82%) ; iii, Me₂PhSiLi, -20 °C, $(80-91\%)$; iv, Bu^tOOH, VO(acac)₂, PhH, 25° C, (85%)

method used to make **1-3)** would then afford semisynthetic analogues. We now report how this degradation may be done, starting with natural mevinolin. The route involves two sequences: in the first (Scheme 1) the diene chromophore of **1** is oxygenated and in the second (Scheme 2) the oxygen substituents are modified in such a way that the $C(1)-C(2)$ and C(4)-C(4a) bonds can be broken by glycol- and α -ketolcleaving agents.

Treatment of **1** with lithium aluminium hydride (84%) and selective silylation (Bu^tPh₂SiCl, dimethylformamide; 100%) of the resulting tetraol gave *5* (Scheme l), which was then protected as a ketal $(5 \rightarrow 6; 82\%)$. It was now possible to discriminate between the two double bonds by hydroxydiscriminate between the two double bonds by hydroxy-
directed epoxidation.⁵ Conjugate addition of Me₂PhSiLi^{6,7}
 $(7 \rightarrow 8; \ddagger 80-91\%)$ and a second hydroxy-directed epoxidation *(85%),* done in the presence of sodium hydrogen carbonate to

Scheme 2 Reagents and conditions: i, (a) Me₃SiCl-Et₃N, DMAP, (91%), (b) PCC, (77%); ii, (a) LDA, -78 °C, (b) Et₃SiCl-Et₃N, (100%); iii, MCPBA, EtOAc, (98%); iv, HOAc-Bu4NF, THF, (85%); v, (a) PPTS, EtOH, (b) PPTS, acetone, **(57%);** vi, Pb(OAc)4, PhH-MeOH, (67%)

ensure preservation of the Me2PhSi-unit, took the sequence as far as 9.§ This compound is a key intermediate in the degradation as it contains the oxygen substituents essential for cleavage of the $C(4)-C(4a)$ bond.

The equatorial hydroxy at C(4) in **9** was silylated selectively [Me₃SiCl, Et₃N, 4-dimethylaminopyridine (DMAP); 91%] (Scheme 2) and oxidation of the $\tilde{C}(1)$ hydroxy [pyridinium chlorochromate (PCC); 77%] gave ketone **10.** This was converted [lithium diisopropylamide (LDA), tetrahydrofuran (THF), Et₃SiCl, -78°C ; 100%] into the triethylsilyl enol ether **11** and epoxidation [m-chloroperbenzoic acid (MCPBA), EtOAc; 98% J then afforded the C(2)-oxygenated ketone **12.7** Exposure to tetrabutylammonium fluoride in acetic acid-THF served to deprotect the $C(2)$ and $C(4)$ oxygens $(12 \rightarrow 13; 85\%)$, and then treatment with pyridinium toluene *p*-sulfonate (PPTS) in ethanol converted the $C(4a)$ -**C(6)** epoxysilane unit into an allylic alcohol. During this experiment there is some hydrolysis of the $C(11)-C(13)$ ketal, and so the crude product is treated with PPTS in acetone to restore the ketal function $(13 \rightarrow 14; 57\%)$. Treatment of 14 with lead tetraacetate in 1:1 benzene-methanol resulted in cleavage of the $C(4)-C(4a)$ and $C(1)-C(2)$ bonds to produce

I Stereochemistry at C(6) in **8** was not established. *7* Stereochemistry at C(2) was not established.

[§] Stereochemistry at C(4a) and C(5) assigned on the basis of the normal mechanism of the Bu^tOOH-VO(acac)₂ process.

(67%) a mixture of esters to which we tentatively assign structure **15.** Formation of **15** is understandable in the terms shown by eqn. (1).

Finally, when **15** was heated in dioxane in the presence of a trace of acid (use of a chromic acid-washed flask), the desired enone **4** was obtained (80%). This compound, previously available only by total synthesis, can be used⁴ to make a variety of mevinolin analogues.

All new compounds were fully characterized by spectroscopic methods, elemental composition being established by mass measurement and/or combustion analysis.

Acknowledgement is made to Sankyo Company (Tokyo) and the NSERC (Canada) for financial support. Our sample of **1** was kindly provided by Sankyo Company.

Received, 30th December 1992; Com. 2106879F

References

1 *(a)* A. *W.* Alberts, J. Chen, G. Kuron, V. Hunt, J. Huff, C. Hoffman, J. Rothrock, M. Lopez, H. Joshua, E. Harris, A. Patchett, R. Monaghan, **S.** Currie, E. Stapley, G. Albers-Schon-

berg, 0. Hensens, J. Hirshfield, K. Hoogsteen, J. Liesch and J. Springer, *Proc. Natl. Acad. Sci. USA,* 1980,77,3957; *(b) A.* Endo, *J. Antibiot.,* 1979, **32,** 852.

- 2 **A.** Endo, M. Kuroda and *Y.* Tsujita, *J. Antibiot.,* 1976, 29, 1346; A. G. Brown, T. C. Smale, T. J. King, R. Hasenkamp and R. H. Thompson, *J. Chem. SOC., Perkin Trans., I,* 1976, 1165.
- 3 K. E. Suckling and P. H. E. Groot, *Chem. Br.,* 1988,24,436; M. *S.* Brown and J. L. Goldstein, in *The Pharmacological Basis of Therapeutics,* ed. *A. G.* Gilman, L. **S.** Goodman, T. W. Rall and F. Murad, Macmillan, New York, 7th edn., 1985, p. 827.
- 4 D. L. J. Clive, K. **S.** Keshava Murthy, **A.** G. H. Wee, J. Siva Prasad, G. V. J. da Silva, M. Majewski, P. C. Anderson, C. F. Evans, R. D. Haugen, L. D. Heerze and J. R. Barrie, *J. Am. Chem. SOC.,* 1990,112,3018; *D.* L. **J.** Clive, K. **S.** Keshava Murthy, R. George and M. J. Poznansky, *J. Chem. SOC., Perkin Trans. I,* 1990, 2099.
- *5* K. B. Sharpless and T. R. Verhoeven, *Aldrichim. Acta,* 1979, 12, 63. M. Kobayashi, **S.** Kurozumi, T. Toru and *S.* Ishimoto, *Chem. Lett.,* 1976, 1341.
- 6 I. Fleming and D. Marchi, Jr., *Synthesis,* 1981, 560; I. Fleming, T. W. Newton and F. Roessler, *J. Chem. SOC., Perkin Trans. 1,* 1981, 2527; **S.** Sharma and *A.* C. Oehlschlager, *Tetrahedron,* 1989, 45, 557.
- 7 Cf. J. **A.** Marshall and B. E. Blough, *J. Org. Chem.,* 1991,56,2225; *S.* Achab and B. C. Das, *J. Chem. SOC., Perkin Trans.* 1,1991,727.