A General Method for Iterative Cyclopentannulation: Sequential Use of Claisen Rearrangement and Radical Enyne Closure

Derrick L. J. Clive* and Hartford W. Manning

Chemistry Department, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

Cycloalkenyl acetylenes **4,** which are easily prepared from allylic alcohols **1,** undergo radical cyclization **(4** -+ **5)** on treatment with stannyl radicals; the products **5** are themselves convertible into allylic alcohols, so that the annulation sequence can be repeated.

We report a method for cyclopentannulation, based on the reactions summarized in Scheme 1. The starting allylic alcohols 1 can be converted by Claisen¹ (or related²) rearrangement into aldehydes $(1 \rightarrow 2 \rightarrow 3)$. These, in turn, are easily elaborated into terminal acetylenes **4,** which undergo cyclization $(4 \rightarrow 5)$ on treatment with stannyl radicals. Double bond cleavage and dehydrogenation takes the route as far as enones **6.** The procedure is iterative because reduction3 of enones affords the same compound class *(i.* e., allylic alcohols) as used at the start (cf. **1).** The method of Scheme 1 should accommodate both stereochemcial and regiochemical control. The newly formed ring is annulated on the same face as the hydroxy group of the parent allylic alcohol; that hydroxy group can be inverted by Mitsunobu reaction,4 and a number of methods are also available⁵ for transposition, in the sense of eqn. (1). In principle, therefore, the new ring can be annulated to span $C(2)$ -C(3) in **1** (Scheme 1) or $C(1)$ -C(2).

$$
\sum_{i=1}^{n} \left(\frac{1}{i} \right)^2
$$

The essential features of the method are illustrated by synthesis (see Scheme 2) of triquinane **19** from allylic alcohol **7.** The silyloxy group in **77** is a useful, and removable, substituent, whose purpose in this particular example is to raise the molecular mass (and boiling point) of the first few compounds of the sequence; analogous compounds lacking the substituent were too volatile for easy manipulation on a small scale.

Treatment of **7** with an excess of ethyl vinyl ether in the presence of mercury(II) acetate (1 equiv.; reflux, 18 h) gave \ddagger [80% **(99%** after correction for recovered **7)]** the expected vinyl ether, which was rearranged⁷ (200 °C, 20 min; 90%) to aldehyde 8. Reduction $[-CHO \rightarrow -CH₂OH; LiAlH₄, tetra$ hydrofuran (THF); **90%]** followed by reaction with triphenyl-

 \dagger Prepared by Mitsunobu inversion (Ph₃P, PhCO₂H, EtO₂CN=N-C02Et; 97%; LiAlH4, THF; **94%)** of *cis* 4-[(1,l-dimethylethyl) **dimethylsilyloxy]cyclopent-2-en-l-ol** (ref. 6).

 \ddagger An excess of anhydrous potassium carbonate must be added before evaporation of the ethyl vinyl ether.

phosphine-carbon tetrabromide⁸ (0 °C to room temp., **30** min; 96%) afforded bromide **9,** and the halogen was then displaced with lithium acetylide [THF-HMPA (hexamethylphosphoramide), -78 "C to room temp., 3 h; **89%).** Addition of triethylborane (1 mol dm-3 in hexane, 1.2 mol per mol **10)** to a hexane solution of **10** (0.014 mol dm-3, 1 mol) and tributyltin hydride (0.018 mol dm-3, 1.2 mol per mol **10)** (room temp., **3** h), followed by silica gel chromatography (to effect protodestannylation of the initial product) gave **11** [76% *(85%* after correction for recovered **lo)].** Double bond cleavage, best done in this case by hydroxylation $[OsO₄]$ (catalytic), 4-methylmorpholine N-oxide, 3 h; 99%] and glycol cleavage $[Pb(OAc)_4, K_2CO_3, 0^{\circ}C$ to room temp., SO min; **93%],** gave the expected ketone, and ring unsaturation was introduced by a standard methods§9 [lithium diisopropylamide (LDA), PhSSPh; m-chloroperbenzoic acid; $(MeO)_3P$, PhMe, reflux; 73%]. Reduction (NaBH₄, CeC13.7H20, MeOH; **91%)** took the sequence as far as allylic alcohol **13**, from which point the original operations (cf. $7 \rightarrow$ **11)** were repeated, but with significant technical improvements.

The hydroxy group of **13** is sterically hindered and formation of the corresponding vinyl ether **14** [refluxing ethyl vinyl ether $(ca. 33 °C)$, $Hg(OAc)_2$, NaOAc; 72%] requires a long reaction time (48 h). The presence of sodium acetate is also essential to avoid decomposition of the starting material. Thermal rearrangement of the hindered vinyl ether **14** in refluxing decalin led to extensive decomposition, but treatment with an excess of triisobutylaluminium¹⁰ (0.087 mol dm⁻³

§ Phenylselenenylation under standard conditions was inefficient.

in CH_2Cl_2 , $-78 °C$ to room temp., 1 h) caused not only rearrangement $(14 \rightarrow 15)$ but also Meerwein-Ponndorf-Verley reduction to the desired alcohol **16,** isolated in 95% yield (from **14).** Diisobutylaluminium hydridell was much less effective for the transformation $14 \rightarrow 16$. Alcohol 16 was converted into acetylene **18** by the general method used earlier (Ph₃P, CBr₄; 96%; LiC=CH, THF-HMPA; 93%), and the acetylene cyclized smoothly in refluxing toluene when treated
with triphenyltin hydride and azoisobutyronitrile. If Again,
with triphenyltin hydride and azoisobutyroni acetylene cyclized smoothly in refluxing toluene when treated
with triphenyltin hydride and azoisobutyronitrile.¶ Again, chromatography of the crude product over silica gel resulted in protodestannylation to afford **19** (79% from **18).** This last experiment took the route to a point where it overlaps with a compound type *(cf.* **11)** used in an earlier step.

The published examples of enyne (and related) cyclization with stannanes are generally¹² cases that benefit¹³ from the presence of *gem* disubstitution¹⁴ or of a heteroatom^{14c,15} in the chain undergoing ring closure; however, these special features16 are unnecessary.

All new compounds were characterized by spectroscopic methods. as well as combustion analytical and/or high resolution mass spectral data.

Acknowledgement is made to the Natural Sciences and Engineering Research Council of Canada and the University of Alberta for financial support.

Received, 11th January 1993; Corn. 3100159H

Ref e re n ces

- 1 Review: F. E. Ziegler, *Chem. Rev.,* 1988, 88, 1423.
- 2 *C'.* A. Y. Mohammed and D. L. J. Clive, *J. Chem. SOC., Chem. Commun.,* 1986, 588.
- 3 J.-L. Luche, *J. Am. Chem.* Soc., 1978, 100, 2226; J.-L. Luche, L. Rodriguez-Hahn and P. Crabbe, *J. Chem. SOC., Chem. Commun..* 1978, 601.
- 4 D. L. Hughes, *Org. React. (N. Y.),* 1992,42,335; **S.** F. Martin and J. **A.** Dodge, *Tetrahedron. Lett.,* 1991, 32, 3017; T. Clarke, J. D. Stewart and B. Ganem, *Tetrahedron,* 1990,46,731. *Cf.* V. Farina, *Tetrahedron Lett.,* 1989, 30, 6645.
- *5* P. **S.** Wharton and D. H. Bohlen, *J. Org. Chem.,* 1961,26, 3615; C. Dupuy and J.-L. Luche, *Tetrahedron,* 1989, 45, 3437; R. P.

7 The conditions used earlier (Et,B, Bu3SnH, air) for the cyclization did not work.

Discordia, C. K. Murphy and D. C. Dittmer, *Tetrahedron Lett.,* 1990, 31, 5603; D. Liotta, G. Zima and M. Saindane, *J. Org. Chem.,* 1982, 47, 1258; D . H . R. Barton, R. **S.** Hay Motherwell and W. B. Motherwell, *J. Chem. SOC., Perkin Trans. 1,* 1981, 2363; **Y.** Ueno, H. Sano and M. Okawara, *Synthesis,* 1980, 1011: **A.** Yasuda, H. Yamamoto and H. Nozaki, *Bull. Chem.* Soc. *Jpn.,* 1979,52,1757; W. *G.* Dauben and D. M. Michno, *J. Org. Chem..* 1977, 42, 682.

- 6 G. Stork, P. M. Sher and H.-L. Chen, *J. Am. Chem.* Soc., 1986, 108. 6384; G. E. Keck and D. **A.** Burnett, *J. Org. Chem.,* 1987, 52,2958; C. Kaneko, **A.** Sugimoto and **S.** Tanaka, *Synthesis,* 1974, 876.
- 7 For a mercury-free Claisen sequence, see: T. Mandai, M. Ueda, **S.** Hasegawa and J. Tsuji, *Tetrahedron Lett.,* 1990, 31, 4041.
- 8 I. M. Downie, J. B. Holmes and J. B. Lee, *Chem. Ind. (London),* 1966, 900.
- 9 B. M. Trost, T. N. Salzmann and K. Hiroi, *J. Am. Chem. Soc.*, 1976, 98, 4887.
- 10 K. Takai, I. Mori, K. Oshima and H. Nozaki, *Tetrahedron Lett.,* 1981, 22, 3985; K. Nonoshita, Y. Maruoka and H. Yamamoto, *Bull. Chem. SOC. Jpn.,* 1992, *65,* 541.
- 11 L. **A.** Paquette, D. Friedrich and R. D. Rogers, *1. Org. Chem.,* 1991, 56, 3841.
- 12 But, see: C. A. Broka and D. E. C. Reichert, *Tetrahedron Lett.,* 1987, 28, 1503; E. J. Enholm, J. **A.** Burroff and L. M. Jaramillo, *Tetrahedron Lett.,* 1990, 31, 3727; H. Pak, J. K. Dickson. Jr. and B. Fraser-Reid, *J. Org. Chem.,* 1989, 54, 5357; H. Pak, I. I. Canalda and B. Fraser-Reid, *J. Org. Chem.,* 1990, *55.* 3009; B.-W. A. Yeung, R. Alonso, G. D. Vitae and B. Fraser-Reid, *J. Carbohydr. Chem.,* 1989, 8, 413.
- 13 **A.** L. J. Beckwith and C. H. Schiesser, *Tetrahedron,* 1985, 41, 3925; *cf.* **A.** Padwa, H. Nimmesgern and G. **S.** K. Wong, *J. Org. Chem.,* 1985, **50,** 5620.
- 14 (a) G. Stork and R. Mook, Jr., *J. Am. Chem. Soc.,* 1987, 109, 2829; (6) K. Vijaya Bhaskar and G. **S.** R. Subba Rao, *Tetrahedron Lett.,* 1989, 30, 225; (c) K. Nozaki, K. Oshima and K. Utimoto, *Tetrahedron,* 1989,45, 923.
- 15 N. Moufid and Y. Chapleur, *Tetrahedron Lett.,* 1991,32, 1799; J. Ardisson, J. P. Férézou, M. Julia and A. Pancrazi, *Tetrahedron Letr.,* 1987, 28, 2001; E. Lee, **S.** B. KO and K. W. Jung, *Tetrahedron Lett.,* 1989, 30, 827; **A.** Nishida, H. Takahashi, H. Takeda, N. Takada and 0. Yonemitsu, *J. Am. Chem.* Soc., 1990, 112,902; K. Nozaki, K. Oshima and K. Utimoto, *Bull. Chem. SOC. Jpn.,* 1987, 60, 3465; K. R. Biggs, P. J. Parsons, D. J. Tapolzcay and J. M. Underwood, *Tetrahedron Lett.,* 1989, 30, 7115; **S.** P. Munt and E. J. Thomas, *J. Chem. SOC., Chem. Commun.,* 1989. 480.
- 16 *CJ* also: E. Lee, C.-U. Hur and C. M. Park, *Tetrahedron Lett.,* 1990, 31, 5039; E. Lee, C.-U. Hur and J.-H. Park, *Tetrahedron Lett.,* 1989, **30,** 7219.