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Electron-transfer Catalysis of Olefin Epoxidation with Nitrogen Dioxide (Dinitrogen 
Tetroxide) 
Eric Bosch and Jay K. Kochi 
Chemistry Department, University of Houston, Houston, Texas 77204-564 I, USA 

The novel epoxidation of diadamantylidene 1 and related hindered olefins with NO2 proceeds by way of the cation 
radical 1 +. generated during the electron-transfer chain (ETC) catalysis initiated by nitrosonium. 

Despite the generally favourable energetics, the thermal 
conversion of olefins to epoxides via the conceptually straight- 
forward oxygen-atom transfer from nitrogen dioxide, i.e. 
reaction ( l) ,  is unknown1 at ambient temperatures. [For 
example, based on the readily available thermodynamic data,2 
ethylene epoxidation in eqn. (1) is exothermic by 11.4 kcal 
mol-1 and AGO = -11.0 kcal mol-1 at 25°C; 1 cal = 4.184 J]. 
More commonly, the combination of ethylene and various 

N204) leads to complex mixtures containing a variety of olefin 
adducts including dinitro, nitronitrite, nitronitrate, nitronit- 
roso and related derivatives3 as well as allylic substitution 
 product^.^ Our approach to the promotion of olefin epoxida- 
tion according to  eqn. (1) was to identify diadamantylidene 1 
as the olefinic substrate, since multiple access to its sterically 
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tant clue to the role of NO+ in the initiation step for eqn. ( l ) ,  
i. e. 13 reaction (4). 

NO+ + NO3- $ N204 G 2 NO2 

Olefin epoxidation by nitrogen dioxide [eqn. (l)] is a 
particularly appealing catalytic process since the instan- 
taneous reoxidation of nitric oxide by dioxygenl4 (i.e. NO + 
Y 2 0 2  + NO2), can accommodate the novel autoxidation in 
eqn. (915 that proceeds according to the mechanism in 
Scheme 1. 
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Scheme 1 

hindered double bond is restricted.5 Thus the exposure of 1 
(5.7 mmol dm-3) to excess of NO2 (2 equiv.) in dichlorome- 
thane at 23°C under an inert (argon) atmosphere led within 
2 h to an 87% (isolated) yield of the crystalline epoxide 1'6 that 
was free of nitro and nitrito contaminants. Coupled with the 
IR analysis of nitric oxide (YNO 1876 cm-1),7 we conclude that 
epoxidation of diadamantylidene with NO2 indeed occurs with 
the stoichiometry given in eqn. (1). Moreover, the analogous 
olefin 2 with NO2 also afforded excellent yields (> 95%) of its 
epoxide, but during ca. 4 h owing to its conformationally less 
rigid structure. By contrast, the unsymmetrical analogue 3 
yielded a complex product mixture resulting from the facile 
allylic (methyl) attack, which is relatively unimportant in 
either 1 or 2.8  

In order to ascertain how the oxygen atom is transferred in 
eqn. (1), the epoxidation of 1 (5.8 mmol dm-3) was 
reexamined with more NO;! (4 equiv.) at low temperatures, at 
which the rate was markedly retarded [e.g. conversion was 
4% (20 min) at -78"CI. Significantly, the addition of 
catalytic amounts (1%) of a one-electron oxidant (either the 
nitrosonium salt9 NO+ BF4- or the aminium salt10 Ar3N+ 
SbC16-) at this low temperature to the solution of 1 and NO2 
led immediately to quantitative yields of diadamantylidene 
epoxide (i.e. complete epoxidation within 20 min at -78 "C). 
Control experiments showed that both additives were capable 
of the rapid oxidation of diadamantylidene to its purple- 
coloured cation radical 1+* ,  e.g. reaction (2), which was 
readily identified by its diagnostic absorption spectrum (A,,, 
530 nmll). Since the cation radical 1+* was easily converted by 
NO2 to epoxide 1' on mixing, we propose the catalytic 
sequence for epoxidation to be that in Scheme 1. 

Electron-transfer chain (ETC) catalysis12 as presented in 
Scheme 1 relies on the production of the cation radical [eqn. 
(2)] as the reactive intermediate which is then rapidly 
converted in the unique epoxidation step with NO2 [eqn. (3)]. 
As such, the severe retardation of NO+-induced catalysis that 
was observed in the presence of added NO gas is consistent 
with the reversibility of the electron-transfer step [eqn. (2)Ia9 
Furthermore, the retardation that was also effected by added 
nitrate (as the tetrabutylammonium salt) provides an impor- 
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