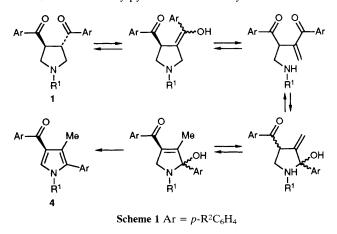
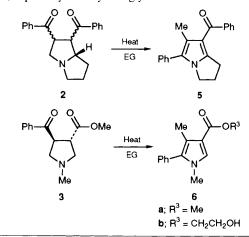
Novel Dehydrative Ring Transformation of 1-Alkyl-3-aroylpyrrolidines into 1-Alkyl-2-aryl-3-methylpyrrole Derivatives


Shuntaro Mataka,* ^a Hirohisa Kitagawa, ^b Osamu Misumi, ^b Masashi Tashiro^a and Kichinosuke Kamata^c

^a Institute of Advanced Material Study and ^b Department of Molecular Science and Technology, Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koh-en, Kasuga-shi, Fukuoka, 816, Japan ° Kurume National College of Technology, 1232, Komorino, Kurume-shi, Fukuoka, 830, Japan

Poly-functionalized pyrroles **4**, **5** and **6** were prepared in a good to high yield by a dehydrative ring transformation of 3-aroylpyrrolidine derivatives **1**, **2** and **3** in ethylene glycol at 130 °C.

Pyrroles are an important class of heterocycle and many preparative methods have been developed.^{1,2} Here we report a novel preparation of 1-alkyl-2-aryl-3-methylpyrroles by a new ring transformation of 1-alkyl-3-aroylpyrrolidines.


trans-1-Alkyl-3,4-diaroylpyrrolidines 1^{\dagger} were prepared in 31–85% yields from 1,2-diaroylethylenes, paraformaldehyde and amino acids according to a method reported previously.³ By employing cyclic amino acids, the bicyclic pyrrolidine **2** was obtained in 80% yield as a mixture (1:1) of two stereoisomers.[‡] The *trans*-aroylpyrrolidine-4-carboxylate **3** was simil-

[†] Compounds **1–6**, which are unknown to the best of our knowledge, were characterized by elemental analysis and IR, ¹H NMR, ¹³C NMR and mass spectroscopy.

arly prepared from methyl *trans*- β -benzoylacrylate in 70% yield.

When a solution of *trans*-3,4-dibenzoyl-1-methylpyrrolidine 1a was heated under the conditions shown in Table 1, 4-benzoyl-1,3-dimethyl-2-phenylpyrrole 4a was obtained. To our surprise, upon heating 1a above its melting point (at 130 °C) for 30 min without any solvent, no reaction occurred, and compound 1a was recovered quantitatively. The transformation of 1a-h into 4a-h proceeded smoothly in alcoholic solvents, especially in ethylene glycol as shown in Table 1.

[‡] The two isomers of **2** were separated by column chromatography on silica gel (Wako gel, C-300), but their stereochemistry has not yet been established. The isomer ratio was determined by ¹H NMR spectroscopy.

Table 1 Transformation of 1 and 4

	Compound 1							Product 4		
-		R ¹	R ²	Solvent ^a	Base ^b	Time/h	Temp./°C		Yield (%)	
	1a	Me	Н	EG		0.5	130	4 a	96	
				EG	DBU	0.5	130		96	
				BuOH	DBU	6	Reflux		93	
				Toluene	DBU	32	Reflux		41	
	1b	Me	Br	EG		0.5	130	4b	73	
	1c	Me	Ph	EG		0.75	130	4c	76	
	1d	Me	Me	EG		0.75	130	4d	79	
	1e	Me	OBu	EG		1.5	130	4e	63	
	lf	PhCH ₂	Н	EG		2	130	4f	75	
	lg	PhCH ₂	Br	EG		1.75	130	4g	77	
	1h	PhCH ₂	Me	EG		3.75	130	4h	75	

^{*a*} EG = ethylene glycol. ^{*b*} DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene.

Compound 2 as a mixture of stereoisomers was heated in ethylene glycol at 130 °C for 1.5 h, producing 1,2-dihydro-3*H*-pyrrolo[1,2-*a*]pyrrole 5 in 66% yield. Under similar conditions, 3 afforded two pyrrole esters, 6a and 6b, in 28 and 62% yields, respectively.

A tentative route for the conversion of 1 into 4 is shown in Scheme 1.

Received, 7th December 1992; Com. 2/06515K

References

- 1 R. J. Sundberg, in *Comprehensive Heterocyclic Chemistry*, ed. A. R. Katritzky and C. W. Rees, Pergamon Press, Oxford, vol. 4, 1984, pp. 313–376.
- 2 R. J. Sundberg, in *Progress in Heterocyclic Chemistry*, ed. H. Suschitzky and E. F. V. Scriven, Pergamon Press, Oxford, vols. 1-4, 1989-1992.
- 3 O. Tsuge, S. Kanemasa, M. Ohe and S. Takenaka, Bull. Chem. Soc. Jpn., 1987, 60, 4079.