Radical Chain Ligand Substitution of $[(\eta^5-RC_5H_4)_2Fe_2(CO)_4]$ with Isocyanides induced by Et₃B

Saburo Nakanishi,* Yasushi Taniki and Yoshio Otsuji

Department of Applied Chemistry, College of Engineering, University of Osaka Prefecture, 1-1 Gakuen-cho, Sakai, Osaka 593, Japan

Reaction of $[(\eta^5-RC_5H_4)_2Fe_2(CO)_4]$ with isocyanides in the presence of a catalytic amount of triethylborane results in the selective monosubstitution of the CO ligand with the isocyanide; a radical chain process is proposed for the reaction.

The ligand substitution reaction is one of the most fundamental reactions of organometallic compounds.¹ Much attention has been focused on the reaction intermediates which involve radical species [Fe(η^5 -C₅H₅)(CO)₂] and dinuclear species [(η^5 -C₅H₅)Fe(μ -CO)₃Fe(η^5 -C₅H₅)] in the photochemical and thermochemical reactions of [(η^5 -C₅H₅)₂Fe₂(CO)₄].^{2–6} For the ligand substitution of [(η^5 -C₅H₅)₂Fe₂(CO)₄] with isocyanides, thermal and photochemical processes are generally used.⁷ However, radical initiated processes have been little reported.⁸ In this communication we report the first example of radical chain ligand substitution reaction of [(η^5 -RC₅H₄)₂Fe₂(CO)₄] with isocyanides induced by triethylborane.

A mixture of **1a** and **2a** (2 equiv.) in benzene was stirred in the presence of a catalytic amount of Et_3B (0.01–0.1 equiv.) under argon at room temperature in the dark to give an isocyanide monosubstituted complex **3a** as the sole product in good yield. The other complexes, except for **1b** reacted similarly with the isocyanides, yielding the corresponding isocyanide monosubstituted complexes. Tetrahydrofuran (THF) and acetonitrile can also be used as a solvent for the reaction. The results are shown in Table 1; the structures of the products were assigned from their spectroscopic data.[†] No isocyanide substituted complex was produced when the reaction was conducted in the absence of Et_3B in the dark, but the substitution reaction proceeded slowly on exposure to room light. Replacement of the CO ligand in **1a** with isocyanides can be achieved by thermal and photochemical reactions⁷ which afford generally polysubstituted complexes such as $[(\eta^5-C_5H_5)_2Fe_2(CO)_2(C=NR)_2]$ and $[(\eta^5-C_5H_5)_2Fe_2(CO)_3(C=NR)]$. However, the present reaction resulted in selective monosubstitution reaction.

Table 1 Et₃B-induced ligand substitution of 1 with 2 in the dark

Complex 1	Isocyanide 2	Et ₃ B/ equiv.	Solvent	t/h	Product $3(\%)^a$	Recovery of $1 (\%)^a$
a	a	0	Benzene	2	0	95
a	а	0.1	Benzene	2	94	3
a	a	0.01	Benzene	17	71	0
а	a	0.1	THF	2	54	20
a	a	0.1	MeCN	2	73	Trace
a	b	0.1	Benzene	2	85	0
a	b	0.1	MeCN	2	88	0
b	a	0	Benzene	2	0	96
b	a	0.1	Benzene	2	0	86
b	a	0.1	THF	2	0	88
c	a	0	Benzene	2	0	95
с	a	0.1	Benzene	2	86	2
с	a	0.1	THF	2	64	15
d	a	0	Benzene	2	0	92
d	a	0.1	Benzene	2	85	7
d	a	0.1	THF	2	63	15

^a Isolated yields.

[†] Selected spectroscopic data for 3c: IR (neat) v/cm⁻¹ 2120 (terminal C=N), 1943 (terminal CO), 1754 (bridged CO); ¹H NMR (CDCl₃) δ 4.71 (4H, s, C₅H₄), 4.40 (4H, s, C₅H₄), 1.16 (9H, s, Bu^t), 0.35 (9H, s, CH₃Si), 0.34 (9H, S, CH₃SI); MS (70 eV) *m*/z 553 (M⁺).

³d: IR (neat) v/cm⁻¹ 2118 (terminal C=N), 1941 (terminal CO), 1744 (bridged CO); ¹H NMR (CDCl₃) δ 4.50–4.20 (8H, m, C₅H₄), 1.16 (9H, s, Bu^t), 0.35 (6H, s, CH₃Si): ¹³C NMR (CDCl₃ at -20 °C) δ 282.1, 212.8, 159.6 97.8, 97.1, 86.2, 85.4, 57.1, 30.5, -3.75; MS (70 eV) *m*/*z* 465 (M⁺).

710

 $\begin{array}{c} [(\eta^{5}\text{-}R^{1}C_{5}H_{4})_{2}Fe_{2}(CO)_{4}] & + C=NR^{2} \rightarrow \\ 1 & 2 & 3 \end{array}$ **a**: $\mathbf{R}^1 = \mathbf{H}$ **a**: $\mathbf{R}^2 = \mathbf{B}\mathbf{u}^t$ **a**: $R^1 = H, R^2 = Bu^t$ **b**: $\mathbf{R}^1 = \mathbf{M}\mathbf{e}$ **b**: $R^2 = cyclo-C_6H_{11}$ **b**: $R^1 = Me$, $R^2 = Bu^t$ c: $R^1 = (Me)_3Si$ c: $R^1 = (Me)_3 Si, R^2 = Bu^t$ d: $R^1 = -Si(Me)_2$ **d**: $R^1 = -Si(Me)_2 - R^2 = Bu^t$ e: $R^1 = H$, $R^2 = cyclo-C_6H_{11}$

Scheme 1

The other notable features of the reaction were as follows: (i) An induction period was observed in the reaction. (ii) The ligand substitution reaction was completely inhibited by the addition of radical inhibitors such as 1,4-benzoquinone. (iii) When traces of O_2 in the reaction mixture were rigorously removed using vacuum line technique, the substitution reaction did not proceed. On exposing the above reaction mixture to an equivalent amount of O_2 to Et_3B , the substitution reaction took place, while a large amount of O2 inhibited the reaction. (iv) No cross-coupling reaction between la and lc occurred under similar reaction conditions, but irradiation of a mixture of la and lc with UV light in the absence of Et_3B gave the cross-coupled product [(η^5 - C_5H_5)(Me_3SiC_5H_4)Fe_2(CO)_4]. From these results, we propose a radical chain mechanism as shown in Scheme 2 for the ligand substitution reaction. Organoboranes are known to be sources of free radicals9 which initiate organic radical reactions.¹⁰ The initial step is the formation of free radicals such as ethyl radical and ethylperoxyl radical by the reaction of Et₃B with traces of O_2 which exists adventitiously in the solvent. However, it is not clear which radical is necessary for the radical chain ligand substitution. Scheme 2 illustrates the ethyl radical as one of the free radicals. It is noteworthy that ligand substituted product was not obtained in the reaction of 1b, and

 $Et_3B + O_2 \longrightarrow Et' + Et_2BO_2'$ $[(\eta^5-C_5H_5)Fe_2(CO)_4] + Et^{\bullet} \longrightarrow [(\eta^5-C_5H_5)_2Fe_2(CO)_3COEt]^{\bullet}$ $[(\eta^{5}-C_{5}H_{5})_{2}Fe_{2}(CO)_{3}COEt]^{\bullet} \longrightarrow [(\eta^{5}-C_{5}H_{5})_{2}Fe_{2}(CO)_{3}] + EtCO^{\bullet}$ $[(\eta^{5}\text{-}C_{5}H_{5})Fe_{2}(CO)_{3}] + C=NR \longrightarrow [(\eta^{5}\text{-}C_{5}H_{5})Fe_{2}(CO)_{3}(C=NR)]$ $EtCO' \longrightarrow Et' + CO$

Scheme 2

the starting material was recovered. The ethyl radical may be captured by the methylcyclopentadienyl ligand of 1b.

We thank Toyo Stauffer Chemical Company for a gift of a hexane solution of Et_3B (1.0 mol dm⁻³).

Received, 20th November 1992; Com. 2/06199F

References

- 1 J. P. Collman, Principles and Applications of Organotransition Metal Chemistry, University Science Books, California, 1987.
- T. J. Meyer and J. V. Casper, *Chem. Rev.*, 1985, **85**, 187.
 M. P. Castellani and D. R. Tyler, *Organometallics*, 1989, **8**, 2133. 4 A. J. Dixon, M. W. Geoge, C. Hughes, M. Poliakoff and J. J.
- Turner, J. Am. Chem. Soc., 1992, 114, 1719.
- 5 R. H. Hooker, K. A. Mahmoud and A. J. Rest, J. Chem. Soc., Chem. Commun., 1983, 1022.
- 6 S. Zhang and T. L. Brown, J. Am. Chem. Soc., 1992, 114, 2723.
- 7 W. P. Fehlhammer and H. Stolzenberg, in Comprehensive Organometallic Chemistry: Dinuclear Iron Compounds with Hydrocarbon Ligands, ed. G. Wilkinson, Pergamon Press, New York, 1982, vol. 4, pp. 523-8.
- 8 N. J. Coville and M. O. Albers, J. Chem. Soc., Dalton Trans., 1983, 947.
- 9 H. C. Brown and M. M. Midland, Angew Chem., Int. Ed. Engl., 1972. 11. 692
- 10 K. Nozaki, K. Oshima and K. Utimoto, J. Am. Chem. Soc., 1987, 109. 2547.