Platinum Complex-catalysed Polycondensation of Tetrakis(dimethylsilyl)benzene with Diynes. Synthesis of Thermally Stable and Conducting Polymers

Yuko Uchimaru, Paul Brandl, Masato Tanaka* and Midori Goto

National Chemical Laboratory for Industry, Tsukuba, Ibaraki 305, Japan

Dehydrogenative double silvlation polymerisation of divnes with 1,2,4,5-tetrakis(dimethylsilvl)benzene in the presence of a catalytic amount of (ethylene)bis(triphenylphosphine)platinum gives new silicon-based polymers, which show high thermal stability and conductivity upon doping.

Silicon-based polymers are attracting increasing attention in view of their unique chemical, physicochemical and thermal properties.¹ We now demonstrate that the dehydrogenative silylation of acetylenes² is a powerful tool for the synthesis of polymers with high thermal stability and electric conduction upon doping.

As a model experiment, p-di(oct-1-ynyl)benzene 1a was treated with o-bis(dimethylsilyl)benzene 2 in the presence of Pt(CH₂=CH₂)(PPh₃)₂ at 30 °C for 12 h. The p-bis(disilacyclohexadienyl)benzene derivative 3a was obtained in 78% yield with evolution of hydrogen, Scheme 1.†‡ 1,1'-Bis(phenylethynyl)ferrocene 1b also reacted smoothly at 30 °C to give 3b in 83% yield. A similar reaction between diphenylacetylene and tetrakis(dimethylsilyl)benzene 4 gave the tricyclic product 5 in excellent yield. X-Ray crystallography revealed that the tricyclic system was almost planar

† Experimental procedures are as follows, for **3a**: A mixture of **1a** (0.125 mmol), **2** (0.25 mmol), Pt(CH₂=CH₂)(PPh₃)₂ (0.005 mmol) and benzene (4 ml) was stirred at 30 °C for 12 h in a 20 ml Schlenk tube. Evaporation of the resulting solution and preparative thin layer chromatography of the residue (silica gel, hexane-benzene 3:1) afforded a white powder **3a** in 78% yield. An analytical sample was obtained by recrystallisation from ethanol. For **6b**: A mixture of **1b** (0.25 mmol), **4** (0.25 mmol), Pt(CH₂=CH₂)(PPh₃)₂ (0.01 mmol) and benzene (6 ml) was stirred at 30 °C for 15 h in a 20 ml Schlenk tube. Filtration of the deep-red mixture and addition of the filtrate to methanol (40 ml) afforded an orange powder **6b** in 94% yield.

‡ Satisfactory analytical data were obtained for all synthesised compounds. **3a**: white powder; m.p. 130–132 °C; ¹H NMR (200 MHz, CDCl₃): δ 0.18 (s, 12H), 0.41 (s, 12H), 0.83 (t, *J* 7 Hz, 6H), 1.1–1.4 (br s, 16H), 2.18 (t, *J* 7 Hz, 4H), 6.90 (s, 4H), 7.35–7.4 (m, 4H), 7.55–7.65 (m, 4H); ¹³C NMR (50.3 MHz, CDCl₃): δ –1.0 (4C), -0.3 (4C), 14.0 (2C), 22.6 (2C), 29.7 (2C), 30.2 (2C), 31.4 (2C), 33.6 (2C), 127.1 (4C), 128.06 (2C), 128.14 (2C), 132.9 (2C), 133.2 (2C), 140.4 (2C), 144.9 (2C), 145.2 (2C), 155.0 (2C), 156.2 (2C). **3b**: orange powder; m.p. 229–230.5 °C; ¹H NMR (CDCl₃): δ 0.12 (s, 12H), 0.57 (s, 12H), 3.70 (m, 4H), 3.89 (m, 4H), 6.8–7.0 (m, 4H), 7.15–7.7 (m, 14H); ¹³C NMR (CDCl₃): δ –0.6 (4C), 2.4 (4C), 71.2 (4C), 71.8 (4C), 85.5 (2C), 125.7 (2C), 127.6 (4c), 128.0 (2C), 128.4 (6C), 132.7 (2C), 133.2 (2C), 143.5 (2C), 145.8 (2c), 145.9 (2C), 148.2 (2C), 155.5 (2C). 5: m.p. >300 °C; ¹H NMR (C₆D₆): δ 0.4 (s, 12H), 0.5 (s, 12H), 6.8–7.1 (m, 20H), 8.1 (s, 2H).

and that the four phenyl groups were nearly perpendicular to this plane (Fig. 1).§

Based on the results of the model systems, we could develop a dehydrogenative double silylation polymerisation reaction as follows.¶ The polymerisation between **1b** and **4** proceeded at 30 °C over 15 h in the presence of the same platinum catalyst, and **6b** which contains the ferrocene structure in the backbone was obtained in 94% yield, Scheme 2, Table 1. The molecular mass [M_w , gel-permeation chromatography (GPC), polystyrene standards] was 2.3×10^4 and the polydispersity (M_w/M_n) was estimated at 2.9.∥ Analytical and spectral data were all in agreement with the proposed structure. Other diacetylenes also underwent the polycondensation with **4**

§ Crystal data for 5: Crystal size $0.2 \times 0.14 \times 0.5$ mm, triclinic, a = 8.5468(6), b = 9.1680(6), c = 20.689(5) Å, $\alpha = 79.502(5)$, $\beta = 72.387(6)$, $\gamma = 88.061(5)^\circ$, V = 977.8(1) Å³, PI, Z = 1, $D_c = 1.003$ g cm⁻³, $\mu = 14.93$ cm⁻¹. Data collection on an Enraf-Nonius CAD-4 diffractometer, graphite-monochromated Cu-K α radiation ($\lambda = 1.5418$ Å). An empirical absorption correction using Ψ scans (transmission factors 0.9689/1.0000). The 2929 observed reflections ($2\theta \leq 120^\circ$; $|F_o| > 30|F_o|$). The structure was solved by MULTAN78. Final R = 0.051 ($R_w = 0.079$). Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

 \P Satisfactory analytical data were obtained for all synthesised polymers. **6a**: pale-yellow powder; ¹H NMR (CDCl₃): δ 0.19 (s, 6H), 0.21 (s, 6H), 0.42 (s, 6H), 0.44 (s, 6H), 0.82 (t, *J* 5.2 Hz, 6H), 1.05–1.4 (br s, 16H), 2.15–2.25 (br s, 4H), 6.8–6.95 (br s, 4H), 7.75, 7.80 and 7.85 [three singlets, total 2H (1:2:1)]; ¹³C NMR (CDCl₃): δ –1.1 (4C), -0.3 (4C), 14.0 (2C), 22.6 (2C), 29.7 (2C), 30.2 (2C), 31.4 (2C), 33.7 (2C), 127.1 (4C), 137.0, 137.2 and 137.4 [total 2C (1:2:1)], 140.4 (2C), 144.1, 144.2, 144.4, 144.5, 155.1 (2C), 156.2 (2C). **6b**: orange powder; ¹H NMR (CDCl₃): δ 0.07 (s, 6H), 0.12 (s, 6H), 0.52 (s, 6H), 0.57 (s, 6H), 3.7 (s, 4H), 3.8 (s, 4H), 6.9 (br s, 4H), 7.25 (br s, 6H), 7.6, 7.7 and 7.8 [three singlets, total 2H (1:2:1)]; ¹³C NMR (CDCl₃): δ –0.58 (2C), -0.52 (2C), 2.45 (2C), 2.51 (2C), 71.1 (4C), 71.8 (4C), 85.2 (2C), 125.8 (2C), 127.6 (4C), 128.5 (4C), 136.4, 137.1 and 137.7 [total 2C (1:2:1)], 142.7, 143.1, 145.1, 145.5, 145.8 (2C), 148.3, 148.4, 155.6, 155.7.

|| The molecular mass (M_n) of the polymer **6b** obtained by vapourpressure osmometry (benzene, 40 °C) was 6.5×10^3 .

Table 1	Polymers (6 from	1,2,4,5-tetraki	s(dimethylsilyl	l)benzene 4	and diynes 1 ^a
---------	------------	--------	-----------------	-----------------	-------------	---------------------------

Polymer	Time/h	Yield (%)	$M_{\rm w}/(M_{\rm w}/M_{\rm n})$	M.p./°C	<i>T</i> ₅ <i>b</i> /°C	Char ^c (Wt%)	Conductivity ^d S cm ⁻¹
ба	18	72e	$1.2 \times 10^4 (2.1)^f$	_			
		258	$2.1 \times 10^{4} (2.8)^{f}$	>300	424	24	1×10^{-4}
6b	15	94	$2.3 \times 10^4 (2.9)^h$	>300	454	49	7×10^{-3}
6c	18	91	Insoluble	>300	496	62	6×10^{-4}

^{*a*} Reaction conditions: 1 0.25 mmol, 4 0.25 mmol, Pt(CH₂=CH₂)(PPh₃)₂ 0.01 mmol, benzene 6 ml, 30 °C. ^{*b*} Temperature of 5% weight loss in TGA. ^{*c*} Wt% of the char formed in TGA up to 900 °C. ^{*d*} Conductivity of the FeCl₃-doped polymer. ^{*e*} Benzene-soluble fraction. ^{*f*} GPC, 1,2-dichlorobenzene, 135 °C, polystyrene standards. ^{*g*} Benzene insoluble fraction. ^{*h*} GPC, tetrahydrofuran, 40 °C, polystyrene standards.

Fig. 1 Perspective view of 5. The molecule itself has a centre of symmetry. Selected bond lengths (Å) and angles (°): Si(1)–C(1) 1.871(2), Si(1)–C(4) 1.882(2), Si(1)–C(7) 1.868(4), Si(1)–C(8) 1.862(4), Si(2)–C(2) 1.872(2), Si(2)–C(3) 1.881(2), Si(2)–C(9) 1.864(5), Si(2)–C(10) 1.873(3), C(1)–C(2) 1.412(3), C(1)–C(1) 1.401(3), C(2)–C(11') 1.402(3), C(3)–C(4) 1.346(3); C(1)–Si(1)–C(4) 110.8(1), C(2)–Si(2)–C(3) 111.1(1), Si(1)–C(1)–C(2) 123.9, Si(1)–C(4)–C(3) 125.3(2), Si(1)–C(4)–C(6) 112.7(2), Si(2)–C(2)–C(1) 124.1(2), Si(2)–C(3)–C(4) 124.6(2), Si(2)–C(3)–C(5) 114.3(2), C(7)–Si(1)–C(8) 108.3(2), C(9)–Si(2)–C(10) 108.0(2), C(2)–C(1)–C(11) 118.2(2), C(1)–C(2)–C(1) 123.7(2).

under mild conditions to give the polymers in good to excellent yields. The polymer **6b** was soluble in benzene, chloroform and tetrahydrofuran. The solubility of **6a** in these solvents was dependent on the molecular mass, and was generally lower. However, **6c** was not soluble at all, and hence its structure determination is only based on elemental analysis and the comparison with **5** in the IR spectrum.

Thermogravimetric analysis (TGA, 10° C min⁻¹ raising rate, under He stream) of the polymers revealed that T_5 's (temperature of 5% weight loss) were all higher than 420 °C.

The weights of the black residues obtained after pyrolysis up to 900 °C ranged from 24 to 62% of the originals. In addition, their differential scanning calorimetry did not indicate distinct melting points nor glass transition temperatures between 50 and 450 °C. Although mechanical properties of these polymers have not yet been evaluated, the thermal behaviour suggests that these polymers are promising as structural materials and as precursors for SiC/C composite materials.

The polymers proved to be insulators (conductivity $<10^{-10}$ S cm⁻¹). However, when doped with FeCl₃, the polymers exhibited electrical conductivity. Thus, the polymers suspended in nitromethane were treated with a nitromethane solution of FeCl₃. The resulting homogeneous mixture was evaporated and the residue was processed into a pellet.³ Measurement by the two-probe method showed conductivities ranging from 10^{-4} to 10^{-3} S cm⁻¹ at 25 °C.

Received, 21st December 1992; Com. 2/06768D

References

- 1 For example, see: *Silicon-Based Polymer Science*, ed. J. M. Zeigler and F. W. G. Fearon, Advances in Chemistry Series 224, American Chemical Society, Washington, DC, 1990.
- 2 For the dehydrogenative double silylation with bis(hydrosilane) compounds, see: Y. Uchimaru, H.-J. Lautenschlager, A. J. Wynd, M. Tanaka and M. Goto, *Organometallics*, 1992, 11, 2639, and the references cited therein.
- 3 A. Proń, D. Billaud, I. Kulszewicz, C. Budrowski, J. Przyluski and J. Suwalski, *Mater. Res. Bull.*, 1981, 16, 1229; S. Ijadi-Maghsoodi and T. J. Barton, *Macromolecules*, 1990, 23, 4485; J. L. Bréfort, R. J. P. Corriu, Ph. Gerbier, C. Guérin, B. J. L. Henner, A. Jean and Th. Kuhlmann, *Organometallics*, 1992, 11, 2500.