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Facile Generation of Hydroxyl Radical by Photolysis of Pyrimido[5,4-glpteridinetetrone
N-Oxides in Aqueous Solution. A New Efficient DNA-photocleaving Agent
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Gifu Pharmaceutical University, 5-6-1, Mitahora-higashi, Gifu 502, Japan

Photolysis of pyrimido[5,4-gipteridinetetrone N-oxide 2 in water with UV-VIS light (>355 nm) provides a convenient
and efficient method for the clean generation of hydroxyl radicals, which are useful as DNA-cleaving agents.

There have been a variety of methods for generating hydroxyl
(OH) radicals involving radiolysis,! photolysis of peroxide
species,2-3 Fenton’s type reactions,* and dissolution of potas-
sium peroxonitrite;> a clean and facile method, however, is
still desirable in OH radical chemistry and for constructing a
new class of agents such as DNA cleaving species.

In this context, we report herein such a method for
generating OH radicals by irradiation (>355nm) of com-
pound 2 in aqueous solution without additives. We also
describe its use as a photochemical DNA-cleaving agent® and
the preparation of 180-labelled N-oxide 2* resulting in the
generation of 180-labelled OH radical.

The practical use of photoexcited heterocyclic N-oxides as
OH radical generators has not been fully documented.”t This
can be ascribed to the fact that most heterocyclic N-oxides
undergo preferentially, intramolecular rearrangements rather
than oxidation of cosubstrates under photochemical con-
ditions.”

Our previous work8:9 has demonstrated that compound 110
exhibits a number of remarkable photochemical properties
unique to heterocyclic N-oxides: 1 functions efficiently under
irradiation (>355 nm) in aprotic solvents (e.g. dry acetonit-
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+ Photolysis of N-hydroxy-2-thiopyridone in CH,Cl, to generate OH
radicals has been reported previously but without detail description:
¢f. D. H. R. Barton, J. Cs. Jaszberenyi and A. 1. Morrell, Tetra-
hedron Lert., 1991, 32, 311. The non-photochemcial DNA cleavage by
oxidative species including OH radicals produced from a phenazine
di-N-oxide derivative in the presence of dithiothreitol has been
reported. The efficacy of DNA cleavage, however, is not so high:
essential complete conversion of form I DNA to form II DNA was
achieved at a 50 pmol dm~—3 concentration of the di-N-oxide, cf. K.
Nagai, B. J. Carter, J. Xu and S. M. Hecht, J. Am. Chem. Soc., 1991,
113, 5099. The N-oxide 2 also mediated the DNA strand scission (only
43% conversion yield at a 50 pmol dm~3 concentration of 2) under the
conditions described by Hecht ez al.

rile) as an electron acceptor and as an agent for oxygen-atom
transfer or dehydrogenation, depending upon the nature of
the cosubstrates, without any accompanying appreciable
intramolecular rearrangements.

Our strategies for generating OH radicals from pyri-
mido[5,4-g]pteridinetetrone N-oxides are based on the novel
photochemical nature of the N-oxide system and on the
assumption that water-soluble derivatives of 1 may effi-
ciently generate OH radicals in a bimolecular fashion from the
water-solvated excited form, see Scheme 1.

In a manner similar to the case of 1,10 the N-oxide 2 [m.p.
264 °C; Amax: 360 (¢ 1.5 x 104) nm in water] was easily
prepared in ca. 50% yield by the oxidation of 6-amino-1-
methoxymethyl-3-methyl-5-nitrosouracil with lead tetraacet-
ate in acetic acid, together with furazano[3,4-d]pyrimidine-
dione derivative. The N-oxide 2 was very stable and, in
contrast with 1, highly soluble in water. Synthesis of
180-labelied N-oxide 2* (180-content = 56%) was achieved
using a 6-amino-5-180-labelled nitrosouracil derivative as
starting material, prepared by the nitrosation of the corre-
sponding 6-aminouracil derivative with nitrosonium tetraflu-
oroborate pretreated with 180-labelled water (180-content =
97%) in dry acetonitrile at 0 °C for 3 min.*

The N-oxide 2 is stable in dry acetonitrile under irradiation
with UV-VIS light (>355 nm) but is gradually deoxygenated
in water, e.g. the photolysis of 2 (500 umol dm—3) in water was
complete after 1h giving the corresponding deoxygenated
pyrimidopteridinetetrone almost quantitatively. The genera-
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Scheme 1 The proposed mechanism for the bimolecular generation of
hydroxyl radicals by photolysis of pyrimido[5,4-g]pteridinetetrone
N-oxides in water

1 The 180-content of 2* was delicately governed by the reaction time
for the pretreatment of the nitrosonium salt with H,!80 and the
conditions were not optimized.
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Table 1 Cleavage of supercoiled circular X 174 RF I (Form I) DNA
into nicked circular (form II) DNA by photoirradiation of pyri-
mido[5,4-g]pteridinetetrone N-Oxide 2 and its inhibition with
dimethyl sulfoxide (DMSO)<

Content of % Form I % Form I1
2 DMSO DNA? DNA?®
0.5umoldm-3 — 43 54
1.0pmoldm—3 — 5 92

0.1% 86 13

1.0% 92 7
2.0umoldm—3 — N.D. 98

0.1% 47 52

1.0% 70 29

2 The reaction mixtures (30 ul total volume) containing 200 ng form I
DNA and the N-oxide 2 at varying concentrations in 50 mmol dm—3
sodium cacodylate buffer (pH 7.5) were irradiated in the absence or
presence of DMSO at a distance of 5 cm from a 400 W high-pressure
mercury-arc lamp through a BiCl; solution filter (>355nm) at
ambient temp. for 10min and then analysed by agarose gel
electrophoresis in the presence of ethidium bromide. The DNA used
contains a small amount of form II DNA (=10%) and a trace amount
of linear DNA. ? Yields were estimated by densitometric analysis of a
photographic negative of the agarose gel after ethidium bromide
staining.

tion of OH radicals in this reaction was confirmed by an EPR
spin-trapping method using 5,5-dimethylpyrroline N-oxide
(DMPO): the OH radical-DMPO spin adduct showed a clear
1:2:2:1 pattern of four lines with an = ayy = 15.0 G (1 Gauss
= 10-4T). The colorimetric quantitative assay of OH
radicals!! showed the generation of ca. 2 equiv. of OH radical
during the reaction, strongly supporting the assumption
described above.§

The ability of 2 to induce photocleavage of DNA was
estimated by using supercoiled circular X 174 RF I (form I)
DNA. When a buffer solution of formI DNA and 2 was
irradiated externally with UV-VIS light (>355nm) at
ambient temperature, an efficient single strand break was
observed as evidenced by the production of relaxed circular
(form IT) DNA with concentration dependence of 2 (see

§ The peak irreversibility of 2 [E°x, = ~0.70V vs. SCE in
0.1 moldm—3 phosphate buffer (pH 7.5)] in cyclic voltammetry
clearly indicates that the protonated radical of 2 (cf. Scheme 1) is very
unstable at ambient temperature.
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Table 1). Essentially complete conversion of form I DNA to
form II DNA was achieved at a 2.0 pmol dm—3 concentration
of N-oxide 2 after irradiation for 10 min. The photochemical
DNA cleavage with 2 was effectively inhibited by the addition
of an OH radical scavenger, dimethyl sulfoxide, with concen-
tration dependence, supporting that the strand break was
induced by OH radicals generated during the reaction.
Comparative experiments of photochemical DNA cleavage
using tricyclic heterocyclic N-oxides such as phenazine N-ox-
ide and 1-methoxymethyl-3-methylalloxazine 5-oxide under
analogous conditions showed that 2 was much more effective
than the N-oxides used. No nicking of form I DNA with 2 was
observed under the reaction conditions without irradiation. ¥
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