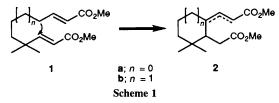
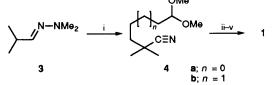
Intramolecular Michael Reaction using Trialkylsilyl Trifluoromethanesulfonates and Tertiary Amine System: Total Synthesis of (\pm) -Ricciocarpin A

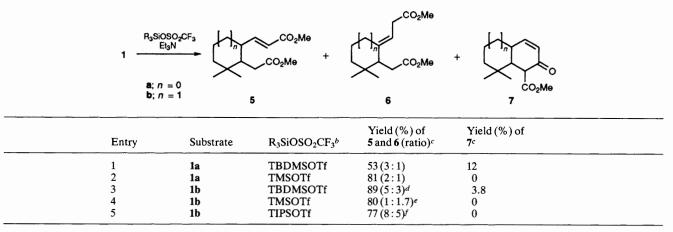

Masataka Ihara, Shuichi Suzuki, Nobuaki Taniguchi and Keiichiro Fukumoto*

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan

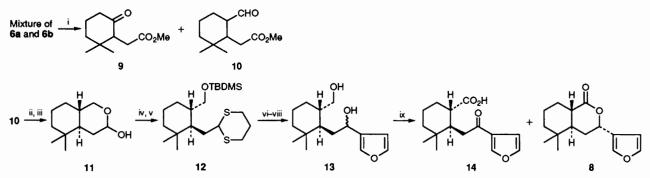

Intramolecular Michael reaction of bis- $\alpha_{i}\beta$ -unsaturated esters **1** forming **2** was carried out by the action of a trialkylsilyl trifluoromethanesulfonate in the presence of a tertiary amine; the product was transformed into ricciocarpin A **8**.

It is known that the intramolecular Michael reaction provides powerful methods for the construction of ring systems.¹ Recently, serial Michael reactions of diesters initiated by external Michael donors have been developed for creation of functionalised ring compounds.² As an extension of our research on intramolecular Michael reactions,³ we studied an unprecedented cyclisation reaction of diesters **1** to **2** (Scheme 1). We report the achievement of this transformation by the use of a trialkylsilyl trifluoromethanesulfonate in the presence of a tertiary amine together with its application for a synthesis of (\pm) -ricciocarpin A **8**, a biologically important sesquiterpene.⁴

Substrates 1a and 1b for the key reaction were prepared starting from 3. Alkylation of 3 accompanied with elimina-



tion⁵ in the presence of lithium diisopropylamide (LDA) produced **4a** and **4b**, which were then converted into **1a** and **1b** in four steps (Scheme 2). Although the usual basic treatment of **1** gave poor results, the desired transformation was performed with a trialkylsilyl trifluoromethanesulfonate and a tertiary amine system.³ The results are summarised in Table 1. It is noteworthy that bicyclic compounds **7a** and **7b**, formed presumably by a tandem Michael–Dieckmann reaction,⁶ were



Scheme 2 Reagents and conditions: i, LDA, -78 °C; Br[CH₂]₃[CH₂]_nCH(OMe)₂, tetrahydrofuran (THF), 0 °C (n = 0, 76%; n = 1, 70%); ii, diisobutylaluminium hydride (DIBAH), CH₂Cl₂, -78 °C; silica gel (n = 0, 93%; n = 1, 92%); iii, NaH, (MeO)₂POCH₂CO₂Me, dimethoxyethane (DME) (n = 0, 83%; n = 1, 95%); iv, pyridinium toluene-*p*-sulfonate, H₂O-THF (1:1 v/v); v, Ph₃P=CHCO₂Me, MeCN (n = 0, 97%; n = 1, 99% for two steps)

^{*a*} All reactions were carried out by use of 4 equiv. of $R_3SiOSO_2CF_3$ and 8 equiv. of Et_3N in CH_2Cl_2 at room temperature for 1–3 h and the reaction mixture was treated with acid. ^{*b*} tert-Butyldimethylsilyl trifluoromethanesulfonate (TBDMSOTf), trimethylsilyl trifluoromethanesulfonate (TMSOTf) and triisopropylsilyl trifluoromethanesulfonate (TIPSOTf). ^{*c*} Products were isolated by column chromatography. ^{*d*} trans- and cis-Substituted **5b** were obtained in a 1.5:1 ratio. ^{*e*} Only trans-substituted **5b** was obtained. ^{*f*} After treatment with 10% aqueous HClO₄, trans- and cis-substituted **5** were obtained in ca. 1:1 ratio.

Scheme 3 Reagents and conditions: i, O₃, CH₂Cl₂, -78 °C; Et₃N (9, 27%; 10, 44%); ii, DBU, CH₂Cl₂, 20 °C (78%); iii, NaBH₄, EtOH, -5 °C (99%); iv, (HSCH₂)₂CH₂, BF₃·OEt₂, CH₂Cl₂ (97%); v, TBDMSOTf, 2,6-lutidine, CH₂Cl₂ (100%); vi, Mel, NaHCO₃, H₂O-MeCN (1:8 v/v), 45 °C; vii, 3-bromofuran, BuⁿLi, THF, -78 °C; viii, Buⁿ₄NF, THF, 0 °C (62% for three steps); ix, PDC, DMF, 3 days (14, 23%; 8, 16%)

obtained as single stereoisomers by the reaction using $TBDMSOTf-Et_3N$.

Ricciocarpin A 8, which was recently isolated from Ricciocarpos natans⁴ and exhibits potent molluscicidal activity,^{4b,c} was synthesised using the above products. The mixture of 5a and 5b, obtained by the reaction in Entry 3, was ozonolysed to give 9 and 10 (Scheme 3). Equilibration of 10 using 1,8diazabicyclo[5.4.0]undec-7-ene (DBU), followed by reduction with NaBH₄, provided a 7:1 mixture of 11 and its cis-fused isomers. After transformation into 12, deprotection of the dithioacetal group, followed by the addition of 3-furyllithium and desilylation afforded a 1.3:1 mixture of diols 13. Oxidation of 13 with pyridinium dichromate (PDC) in dimethylformamide (DMF) produced the ketoacid 14, m.p. 130–131 °C (lit.,^{4d} m.p. 131–132 °C), along with (\pm)-ricciocar-pin A 8, m.p. 92–92.5 °C (lit.,^{4d} m.p. 95–96 °C). Eicher and his coworkers have stereoselectively converted 14 into (\pm) -8.4d The spectral data of the synthetic 8 were consistent with those of the natural product.

We thank Professor H. Becker, University of Saalandes for generously providing natural ricciocarpin A.

Received, 3rd February 1993; Com. 3/00690E

References

- Reviews: D. A. Oare and C. H. Heathcock, Topics Stereochem., 1989, 19, 227; P. Perlmutter, Conjugate Addition Reactions in Organic Synthesis, Pregamon, Oxford, 1992. Recent examples: G. Stork and N. A. Saccomano, Tetrahedron Lett., 1987, 28, 2087; T. Terada and T. Yamazaki, J. Am. Chem. Soc., 1988, 110, 958; Y. Yokoyama and K. Tsuchikura, Tetrahedron Lett., 1992, 33, 2823.
- P. G. Klimko and D. A. Singleton, J. Org. Chem., 1992, 57, 1733;
 K. Hori, N. Hikage, A. Inagaki, S. Mori, K. Nomura and E. Yoshii, J. Org. Chem., 1992, 57, 2888; T. Uyehara, N. Shida and Y. Yamamoto, J. Org. Chem., 1992, 57, 3139.
- Yamamoto, J. Org. Chem., 1992, 57, 3139.
 M. Ihara and K. Fukumoto, J. Synth. Org. Chem. Jpn., 1986, 44, 96 and references cited therein; M. Ihara, S. Suzuki, N. Taniguchi, K. Fukumoto and C. Kabuto, J. Chem. Soc., Perkin Trans. 1, 1992, 2527; M. Ihara, M. Ohnishi, M. Takano, K. Makita, N. Taniguchi and K. Fukumoto, J. Am. Chem. Soc., 1992, 114, 4408.
- 4 (a) G. Wurzel and H. Becker, *Phytochemistry*, 1990, 29, 2565; (b)
 G. Wurzel, H. Becker, Th. Eicher and K. Tiefensee, *Planta Med.*, 1990, 56, 444; (c) H. D. Zinsmeister, H. Becker and Th. Eicher, *Angew. Chem., Int. Ed. Engl.*, 1991, 30, 130; (d) Th. Eicher, K. Massonne and M. Herrmann, *Synthesis*, 1991, 1173.
- 5 T. Cuvigny, J. F. Le Borgne, M. Larchevêque and H. Normant, Synthesis, 1976, 237.
- 6 M. J. Aurell, P. Gaviña, S. Gil, M. Parra, A. Tortajada and R. Mestres, Synth. Commun., 1991, 21, 1825; G. H. Posner and E. M. Shulman-Roskes, J. Org. Chem., 1989, 54, 3514.