Synthesis and Remarkable Properties of Iron β -Polynitroporphyrins as Catalysts for Monooxygenation Reactions

J. F. Bartoli, P. Battioni, W. R. De Foor and D. Mansuy

Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, URA 400, Université René Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France

Two new porphyrins bearing several electron-withdrawing β -substituents were obtained in one step, in yields of about 50%, by nitration of *meso*-tetra(2,6-dichlorophenyl)porphyrin (TDCPPH₂) and *meso*-tetrapentafluorophenylporphyrin (TFPPH₂) with HNO₃; the iron(III) complex of β -hexanitro-TDCPPH₂ was a remarkable catalyst for the epoxidation of cyclooctene with diluted H₂O₂ (complete conversion and 97% yield in 0.5 h) in the absence of any cocatalyst, and for the hydroxylation of alkanes, *e.g.* heptane, by O₂.

Many systems using iron or manganese meso-tetraarylporphyrins as catalysts with various oxygen atom donors have been shown to efficiently mimic cytochrome P450-dependent monooxygenases.¹ Recently, iron meso-tetraarylporphyrins bearing 8 halogen substituents on the pyrrole β -positions have been found to be much better catalysts for the hydroxylation of unreactive alkanes with PhIO, peracids or O₂ than the corresponding iron porphyrins without β -halogen substituents.^{1g,2,3} In that context, it was tempting to prepare iron meso-tetraarylporphyrins bearing strong electronwithdrawing substituents on the β -pyrrole positions and to study their properties as oxidation catalysts. This communication describes an easy access to some new porphyrins bearing 4–6 β -nitro substituents from the reaction of TDCPPH₂ and TFPPH₂ with HNO₃, and reports preliminary results on the remarkable properties of their iron complexes as oxidation catalysts, one complex being able to catalyse alkene epoxidation by H_2O_2 without the need of cocatalyst. It is noteworthy that a patent recently appeared⁴ on the possible preparation of β -polynitroporphyrins upon the direct reaction of NO₂ with metal complexes of TFPPH₂, but no description of the products was given.

In a typical experiment, 100 equiv. of red fuming HNO₃ were added dropwise over 8 h to a solution of TDCPPH₂[†] (5 mmol dm^{-3}) in pure CHCl₃ at room temp. The reaction was followed by visible spectroscopy, as the introduction of nitro groups on β -pyrrole positions was accompanied by a redshift of the Soret peak of the porphyrin. Final Soret peaks at 448 nm (in the case of TDCPPH₂) and 430 nm (in the case of TFPPH₂) were observed after stirring the reaction mixture for 24-48 h. These peaks remained unchanged on further addition of HNO₃. Such a reaction performed on TDCPPH₂ led to a 90:10 mixture of β -hexanitro- and β -pentanitro-TDCPPH₂ (from ¹H NMR), with a 70% yield. The main product was purified by column chromatography on silica (CH₂Cl₂cyclohexane); UV-VIS (451 and 546 nm), ¹H NMR and mass spectra and elemental analysis (C, H, N) were in complete agreement with a β -hexanitro-TDCPPH₂ structure. For instance, the mass spectrum (CI, NH₃) showed an isotopic cluster centred at m/z = 1160 for the molecular ion, with an isotopic distribution identical to that calculated for β-hexanitro-TDCPPH₂, and an isotopic cluster centred at 1115 for the main fragment $(M - NO_2)$. The ¹H NMR spectrum (in CDCl₃) showed three sets of signals for the pyrrole, phenyl and NH protons with the expected 2 H: 12 H: 2 H ratio. The chemical shifts (δ 7.75 and 7.65) and shape of the phenyl H signals were very similar to those found for TDCPPH₂, indicating that the meso phenyl groups remained intact during the reaction. The presence of several signals for the pyrrole H atoms (three singlets at δ 8.88, 8.8 and 8.6) showed that the product was a mixture of regioisomers obtained by the introduction of six β -nitro substituents on the pyrrole rings (six possible regioisomers).

Reaction of $TFPPH_2^{\dagger}$ with HNO_3 under similar conditions mainly led to a mixture of the regioisomers derived from the introduction of one nitro group on each pyrrole ring (55% yield). The UV-VIS (430, 534, 579, 607 and 665 nm), ¹H NMR [singlets at δ 9.09, 9.02 and 8.99 (4 H) and broad singlet at δ -2.85 (2 H)] and mass [EI, 70ev; m/z = 1154 (M, 2%) and 1109 (M -NO₂, 100%)] spectra were in complete agreement with a β -tetranitro-TFPPH₂ structure.[‡] All attempts to obtain TDCPPH₂ substituted by more than six β -nitro groups or TFPPH₂ substituted by more than four β -nitro groups by using more HNO₃, higher temperatures or longer reaction times in reactions between HNO₃ and these porphyrins or their Zn^{II} or Fe^{III} complexes, were unsuccessful.

The iron(III) complex of β -hexanitro-TDCPPH₂, Fe(TDCPN₆P)Cl (Scheme 1), proved to be a good catalyst for the hydroxylation of heptane by PhIO. It led to a total hydroxylation yield of 66%, superior to that of Fe(TDCPP)Cl (38%) but less than that observed with Fe(TDCPCl₈P)Cl⁺ (78%)⁸ (Table 1). However, the most spectacular property of $Fe(TDCPN_6)Cl$ was its capacity to catalyse the epoxidation of cyclooctene with diluted H2O2 in the absence of any cocatalyst. Addition of 3 equiv. H₂O₂ to cyclooctene in CH₂Cl₂-MeCN led to its almost complete conversion into cyclooctene epoxide in less than 0.5 h at room temp. Under identical conditions, Fe(TDCPP)Cl and Fe(TFPP)Cl gave very low epoxidation yields, and even Fe(TDCPCl₈P)Cl was a poor catalyst for this reaction (20% yield) (Table 1). It is remarkable that Fe(TDCPN₆P)Cl alone gave results similar to those of the best reported metalloporphyrin systems for cyclooctene conversion into its epoxide by H_2O_2 , which involve Mn(TDCPP)Cl and a cocatalyst like imidazole.9 The iron(III) complex of β -tetranitro-TFPPH₂, Fe(TFPN₄P)Cl, was less efficient than Fe(TDCPN₆P)Cl for this reaction.

Fe(TDCPN₆P)Cl was also a better catalyst than $Fe(TDCPCl_8P)Cl$ for the oxidation of alkanes by O₂ at 90 °C, under moderate O₂ pressure.§ As shown in Table 1, Fe(TDCPP)Cl was unable to catalyse the oxidation of conditions cvclohexane under these whereas Fe(TDCPCl₈P)Cl led to cyclohexanol and cyclohexanone (177 and 140 turnovers per 2 h), and Fe(TDCPN₆P)Cl was two times more active than Fe(TDCPCl₈P)Cl. The superiority of Fe(TDCPN₆P)Cl was more obvious in the case of heptane hydroxylation, as this catalyst was found to be eight times more efficient that Fe(TDCPCl₈P)Cl (187 turnovers per 2 h compared to 24).

	Reaction and products/% yield				Reaction and products/turnovers (per 2 h)			
	Heptane + PhIO ^a			Cyclooctene $+ H_2O_2^c$	Cyclohexane + O_2^d		Heptane + O_2^d	
	Heptanols (1-/2-/3-/4- ol ratio)	Heptanones ^b	Total yield	Cyclooctene epoxide	Cyclohexanol	Cyclohex- anone	Heptanols (1-/2-/3-/4- ol ratio)	Heptanones
Fe(TDCPP)Cl	26 (0.5:57.5: 30:12)	6	38 ^e	5	<1	<1	<1	<1
Fe(TDCPCl ₈ P)Cl	68 (1:42:41:16)	5	78 ^e	20	177	140	6 (1:39:38:22	18
Fe(TDCPN ₆ P)Cl	56 (1:49:33:17)	5	66	97	370	270	70 (1:38:38:23	 117)

^{*a*} Heptane: PhIO: iron porphyrin = 800: 20:1 in CH₂Cl₂ (catalyst concentration 2 mmol dm⁻³), 1 h at room temp. Yields were based on the amount of PhIO used (PhIO was totally consumed in each reaction); total yields were calculated assuming that 2 moles of PhIO were necessary for ketone formation. ^{*b*} Only the total yield of heptanones was given; the ratio between 2-, 3- and 4-heptanone was equal to that found for the corresponding alcohols. ^{*c*} Cyclooctene: H₂O₂: catalyst = 100: 300:1 in CH₂Cl₂-MeCN (1:1) (2 mol dm⁻³ catalyst), 1 h at room temp. H₂O₂ was progressively added (3 additions of molar equivalents relative to cyclohexane); if more H₂O₂ was added, the catalyst began to be destroyed. Yields are based on the initial quantity of cyclooctene. ^{*d*} A solution of catalyst (2 mol dm⁻³ in 10 ml benzene and 40 ml alkane) was stirred in an autoclave under 10⁶ Pa of O₂ at 90 °C for 2 h. Results are given in mole of products formed per mole of catalyst per 2 h. ^{*e*} Results from ref. 8.

The aforementioned results describe an easy one-step access to a new series of porphyrins bearing several electronwithdrawing substituents on the β -pyrrole positions by nitration of the readily accessible TDCPPH₂ and TFPPH₂ with HNO₃ at room temp. in yields around 50%. By using a large excess of HNO₃, β -hexanitro-TDCPPH₂ and β -tetranitro-TFPPH₂ are the main products obtained. However, the use of a smaller excess of HNO₃ leads to mixtures of derivatives of TDCPPH₂ with four or five β -nitrogroups, and mixtures of TFPPH₂ derivatives containing two or three β -nitro groups.

Received, 23rd July 1993; Com 3/04384C

Footnotes

 \dagger TDCPPH₂, 5 TFPPH₂⁶ and TDCPCl₈PH₂ [tetra-(2,6-dichlorophenyl)- β -octa-chloroporphyrin], 7 and their iron complexes, were prepared as described previously.

[‡] This structure was confirmed by the mass spectrum [Cl, NH₃: m/z = 1216 (M - H, 100%)] and elemental analysis (C, H, N) of the Zn^{II} complex of the isolated porphyrin.

§ These conditions were similar to those described by Lyons *et al.*³ for alkane oxidation by O₂ catalysed with iron polyfluorinated porphyrins. The marked increase in catalytic activity that we observed upon introduction of β -nitro groups on Fe(TDCPP) is in agreement with recent comments on iron polyfluorinated porphyrins.⁴

References

- For reviews, see (a) T. J. McMurry and J. T. Groves, in Cytochrome P-450, Structure, Mechanism and Biochemistry, ed. P. R. Ortiz de Montellano, Plenum Press, New York, 1986, p. 1; (b) B. Meunier, Bull. Soc. Chim. Fr., 1986, 4, 578; (c) D. Mansuy, Pure Appl. Chem., 1987, 59, 759; (d) D. Mansuy, P. Battioni and J. P. Battioni, Eur. J. Biochem., 1989, 184, 267; (e) M. J. Gunter and P. Turner, Coord. Chem. Rev., 1991, 108, 115; (f) D. Mansuy and P. Battioni, in Bioinorganic Catalysis, ed. J. Reedijk, M. Dekker, New York, 1993, p. 395; (g) B. Meunier, Chem. Rev., 1992, 92, 1411.
- 2 D. Mansuy, Coord. Chem. Rev., 1993, 125, 129.
- 3 P. E. Ellis and J. E. Lyons, Coord. Chem. Rev., 1990, 105, 181.
- 4 P. E. Ellis and J. E. Lyons, USP 5 120 882/1992
- 5 P. S. Traylor, D. Dolphin and T. G. Traylor, J. Chem. Soc., Chem. Commun., 1984, 279.
- 6 C. K. Chang and F. Ebina, J. Chem. Soc., Chem. Commun., 1981, 778.
- 7 D. H. Dolphin, T. Nakano, T. K. Kirk, T. E. Marone, R. L. Farrell and T. P. Wijesekera, PCT Int. Appl. WO 88/07 988/1988.
- 8 J. F. Bartoli, O. Brigaud, P. Battioni and D. Mansuy, J. Chem. Soc., Chem. Commun., 1991, 440.
- 9 P. Battioni, J. P. Renaud, J. F. Bartoli, M. Reina-Artiles, M. Fort and D. Mansuy, J. Am. Chem. Soc., 1988, **110**, 8462; F. Montanari, S. Banfi and S. Quici, Pure Appl. Chem., 1989, **61**, 1631; A. M. d'A. R. Gonsalves, R. A. W. Johnstone, M. M. Pereira and J. Show, J. Chem. Soc., Perkin Trans 1, 1991, 645. For epoxidations of alkenes by H₂O₂ catalysed by iron porphyrins (but using an excess of alkene relative to H₂O₂) see T. G. Traylor, S. Tsuchiya, Y. Byun and C. Kim, J. Am. Chem. Soc., 1993, **115**, 2775.