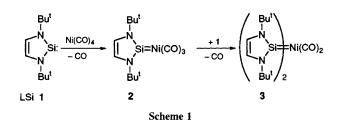
33

Silylene Complexes from a Stable Silylene and Metal Carbonyls: Synthesis and Structure of $[Ni{(Bu^tN-CH=CH-NBu^t)Si}_2(CO)_2]$, a Donor-free Bis-silylene Complex

Michael Denk,* Randy K. Hayashi and Robert West


University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, USA

 $[Ni(LSi)_2(CO)_2]$ **3**; the first silvlene complex of nickel, has been obtained from the stable silvlene 1,3-di-*tert*-2,3-dihydro-1*H*-1,3,2-diazasilol-2-ylidene (LSi) **1** and tetracarbonylnickel; complex **3** was characterized by single crystal X-ray diffraction and NMR spectroscopy (¹H, ¹³C, ²⁹Si).

Silylenes, like carbenes, have been shown to form stable metal complexes.^{1–3} Unlike the carbene complexes, silylene complexes usually require additional stabilization by a Lewis base coordinated to silicon. The structure of the first base-free silylene complex has only recently been reported.³

The synthesis of 1,3-di-*tert*-butyl-2,3-dihydro-1*H*-1,3,2-diazasilol-2-ylidene 1,⁴ a stable silylene,⁵ provided the possibility to obtain silylene complexes by CO substitution from metal carbonyls. Reaction of 1 with Ni(CO)₄ gave the bis-silylene complex 3 in nearly quantitative yield.[†] Compound 3 is the first silylene complex of nickel as well as the first bis-silylene complex without Lewis base stabilization. It is highly air- and moisture-sensitive but quite stable thermally (mp 160 °C, decomp.). No monosubstitution product 2 was observed on changing the reaction conditions [inverse addition of 1 to a large excess of Ni(CO)₄ at -80 °C] or on the attempted comproportionation of 3 with Ni(CO)₄⁷ (Scheme 1).

The structure of 3, determined by single crystal X-ray diffraction,‡ shows a slightly distorted tetrahedral arrange-

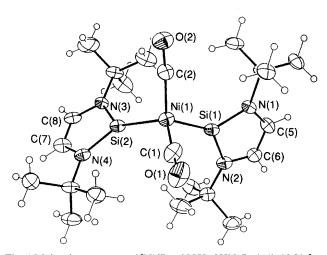


Fig. 1 Molecular structure of $[Ni{Bu'-NCH=CHN-Bu'}Si]_2(CO)_2]$ 3. ORTEP view with hydrogen atoms omitted for clarity. Thermal ellipsoids are at the 50% probability level. Selected bond distances (pm) and bond angles (°) as follows: Ni(1)–Si(1) 220.7(2), Ni(1)–Si(2) 221.6(2), Ni(1)–C(1) 177.8(7), Ni(1)–C(2) 176.1(6), C(1)–O(1) 113.9(9), C(2)–O(2) 115.7(7), Si(1)–N(1) 174.5(5), Si(1)–N(2) 174.3(5), Si(2)–N(3) 174.9(5), Si(2)–N(4) 174.5(5), N(1)–C(2) 138.6(7), N(2)–C(6) 140.2(9), N(3)–C(8) 139.7(8), N(4)–C(7) 139.3(9), C(5)–C(6) 134.4(8), C(7)–C(8) 133.0(9), Si(1)–Ni(1)–Si(2) 108.4(1), Si(1)–Ni(1)–C(1) 103.5(2), Si(1)–Ni(1)–C(2) 112.5(2), Si(2)–Ni(1)–C(1) 115.3(3), Si(2)–Ni(1)–C(2) 106.2(2), C(1)–Ni(1)–C(2) 111.1(3), N(1)–Si(1)–N(2) 90.0(2), N(3)–Si(2)–N(4) 89.9(2).

ment of two silylene and two carbonyl ligands around nickel. The C_2N_2Si units of both silylene ligands are planar. The coordination geometry of nickel in 3 is similar to that of the CC saturated germanium analogue.⁶

The N-Si-N angle of **3** is remarkably small (90°), its value being close to what was predicted⁷ for free silylenes. The Si-Ni bond is short; bond lengths reported for silylene complexes of iron, chromium and manganese¹ are typically 10–15 pm longer than the Si-Ni bond in **3**. A recent theoretical study predicts a Si-Ni bond length of 229 pm.⁸

The CO stretching frequencies and the chemical shift, $\delta(^{13}C)$, of the carbonyl groups of **3** are both nearly identical with the values reported for the phosphine complex [Ni(Ph₃P)₂(CO)₂] [v/cm⁻¹,⁹ 2000 (A₁) and 1941 (B₁); $\delta(^{13}CO)$,¹⁰ 199.4].

Silicon NMR studies show the silicon nucleus to experience moderate deshielding upon coordination (1 + 78.4 ppm, 3 + 97.5 ppm); all other NMR shifts show little change. No satellites due to coupling to ⁶¹Ni could be detected.

This work was supported by a grant to M. D. from the Alexander von Humboldt Foundation.

Received, 20th May 1993; Com. 3/02901H

Footnotes

[†] Synthesis of 3: compound 1 (0.158 ml, 1.22 mmol) was added to a solution of Ni(CO)₄ (480 mg, 2.44 mmol) in *n*-hexane (5 ml) at room temperature. After CO evolution ceased (*ca.* 5 min) stirring was continued for 1 h. Cooling to $+5 \degree$ C (2 h) then $-25 \degree$ C (1 day) gave 576 mg (93%) of 3 after filtration and drying.

mg (93%) of **3** after filtration and drying. ‡ *Crystal data* for **3**: $C_{22}H_{40}N_4NiSi_2O_2$, M = 507.5, crystal size = $0.1 \times$ 0.2×0.2 mm, monoclinic, space group $P2_1/c$, a = 9.4873(15), b = 16.374(2), c = 17.8784(15) Å, $\beta = 105.245(11)^\circ$, V = 2679.5(5) Å³, Z = 4, $D_c = 1.258 \text{ g cm}^{-3}$, $\lambda(Cu-K\alpha) = 1.54178 \text{ Å}$, $\mu(Cu-K\alpha) = 2.087$ mm^{-1} , F(000) = 1088, scan type $2\theta-\theta$, T = 113(2) K, $4.0 < 2\theta$ 114.0°, total unique data 3571 ($R_{int} = 10.6\%$), no. of observations [(F) > $4\sigma(F$)] 2745, observations/variables 9.7, R = 0.068, $R_w = 0.089$, maximum peak in final Fourier difference synthesis 1.13 e Å⁻³. Data were collected on a Siemens P4 diffractometer. No absorption correction was applied. Lorentz and polarisation corrections were applied. Systematically absent reflexions were rejected and equivalent reflexions were merged. The heavy-atom positions were determined by direct methods. Subsequent difference Fourier synthesis revealed the positions of all other non-hydrogen atoms; organic hydrogen atoms were put into idealized position. The non-hydrogen atoms were refined by the full-matrix least-squares method with the hydrogen atoms 'riding' on their supporting carbon atoms. A weighting scheme $[w^{-1} = \sigma^2(F) + 0.001F^2]$ was applied and the data were corrected for the effects of anomalous dispersion and seondary extinction. Crystallographic calculations were carried out using the Siemens SHELXTL PLUS program¹¹ on a Silicon Graphics Indigo system.

Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

§ NMR data were recorded at room temperature in C_6D_6 solution at 200 MHz (¹H), 126 MHz (¹³C) and 99.3 MHz (²⁹Si). Selected spectroscopic data for 1: ¹H NMR δ 1.40 (18 H, s, CMe₃) and 6.74 (2 H, s); ¹³C NMR δ 30.3 (¹J 125.7 Hz, CMe₃), 54.0 (CMe₃) and 120.0 (dd, ¹J 176.1 Hz, ²J 11.0 Hz, =CH); ²⁹Si NMR δ +78.4 (s).

34

For 3: ¹H NMR: δ 1.46 (18 H, s, CMe₃) and 6.57 (2 H, s); ¹³C NMR δ 33.3 (¹J 125.7 Hz, CMe₃), 55.2 (CMe₃), 119.1 (dd, ¹J 179.5 Hz, ²J 9.0 Hz, =CH) and 201.0 (CO); ²⁹Si NMR δ +97.5 (s); IR (CsBr, Nujol) v/cm⁻¹ 2011w, 2001s, 1995m, 1983w, 1945s, 1366s, 1260s, 1212m, 1144w, 1096mbr, 1022sbr, 806s, 729m, 671m, 510w and 461 w.

References

- C. Zybill and G. Müller, Angew. Chem., Int. Ed. Engl., 1987, 26, 669; Organometallics, 1987, 7, 1368; C. Zybill, D. L. Wilkinson and G. Müller, Angew. Chem., Int. Ed. Engl., 1988, 27, 583; P. Jutzi and A. Möhrke, Angew. Chem., Int. Ed. Engl., 1990, 29, 893; L. K. Woo, D. A. Smith and V. G. Young Jr., Organometallics, 1991, 10, 3977; T. Takeuchi, H. Tobita and H. Ogino, Organometallics, 1991, 10, 835; C. Leis, D. L. Wilkinson, H. Handwerker and C. Zybill, Organometallics, 1992, 11, 514; C. Leis, D. L. Wilkinson, H. Handwerker and C. Zybill, Organometallics, 1992, 11, 514.
- 2 For reviews on silylene chemistry see: W. Petz, Chem. Rev., 1986, 86, 1019; T. D. Tilley, Comments Inorg. Chem., 1990, 10, 37; C. Zybill, Top. Curr. Chem., 1991, 160, 1; P. D. Lickiss, Chem. Soc. Rev., 1993, 21, 271.

- J. CHEM. SOC., CHEM. COMMUN., 1994
- 3 S. D. Grumbine and T. D. Tilley, J. Am. Chem. Soc., 1993, 115, 358.
- 4 The silylene 1 was synthesized by reductive dehalogenation of the dichloride LSiCl₂ (H. tom Dieck and M. Zettlitzer, *Chem. Ber.*, 1987, 120, 795) with potassium in THF (reflux, 3 days), and purified by distillation (bp 95 °C at 1 Torr).
- 5 A monomeric, stable divalent silicon compound, bis(pentamethylcyclopentadienyl)silicon, has been described previously: P. Jutzi, U. Holtmann, D. Kanne, C. Krüger, R. Blohm, R. Gleiter and I. Hyla-Kryspin, *Chem. Ber.*, 1989, **122**, 1629.
- 6 W. A. Herrmann, M. Denk, J. Behm, W. Scherer, F.-R. Klingan, H. Bock, B. Solouki and M. Wagner, *Angew. Chem.*, 1992, **104**, 1489.
- 7 W. S. Sheldrick, in: *The Chemistry of Organic Silicon Compounds*, ed. S. Patai and Z. Rappoport, Wiley, 1989, pp. 231-233.
- 8 T. R. Cundari and M. S. Gordon, J. Phys. Chem., 1992, 96, 631.
- 9 C. A. Tolman, J. Am. Chem. Soc., 1970, 92, 2956.
- 10 G. M. Bodmer, Inorg. Chem., 1975, 14, 1932; B. E. Mann and B. F. Taylor, ¹³C NMR Data for Organometallic Compounds, Academic Press, London, 1981, p. 180.
- 11 G. M. Sheldrick (1990), version 4.2, Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin.