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N,N -Di-tert-Butylethylenediamine—Cl,H;_,AINMe; Derivatives: Alane-rich [(H,Al){p-
N(But)CH,},] and Stable, Intramolecular Secondary Amine Alane Complexes

[Cl,,H,_,AI{N{H){But)CH,CH,NBut], n = 0,1
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Treatment of N,N'-di-tert-butylethylenediamine with two equivalents of H3AINMeg in diethyl ether affords a novel
alane-rich amido species [(H,Al),{u-N(But)CH,},] 1, whereas with one equivalent a stable, intramolecularly coordinated

secondary amine adduct of aluminium dihydride results, [H,AI{N(H)(But)CH,CH,NBut] 2; the monochloro analogue
[Cl(H)AI{N(H)(But)CHZCHzl\'IBut] 3 is accessible using CIH,AINMe3, as a mixture of diastereoisomers in solution.

The only well characterised amidoalane complexes are (i)
trimeric [{H,Al(u1-NMe;)}3],1-* and dimeric [{HAIl(p-
NMe;)(NMe») )2l and [{H,Al{p-N(CHMeCH,),CH,} },].*
possessing either four- or six-membered [AIN], ring systems,
and (if) trimeric [{H(u-H)AI{N(CHMeCH;),CH,}};] and
dimeric [{(n-H)AI{N(CMe,CH;),CH,},},] where the bulky
amido groups circumvent N-bridging, and association is via
H-bridges.4 While this type of association is unknown for
amidogallanes, a more extensive range of structural types
have been established, including dimeric [{H,Ga-
(u-NMe,)}»)* (¢f. trimeric for the aluminium analogue),
trimeric [[H,Ga{u-N(CH,):}]5]° and [{H,Ga(un-NH,)}s],”
[(H,Ga),{u-N(But)CH,},],2 and the bis-amido species
[(HGa)z{(NPriCHz)g}zl and [H5G33{(NMCCH2)2}2].9

In developing the bis-amido chemistry for alane we find that
N,N'-di-tert-butylethylenediamine is readily metallated by
H;AINMe; affording three isolable amido species. Two of
these are exceptional, notably the alane-rich [(HyAl),{u-
N(But)CH,},] 1, and the remarkably stable, intramolecularly
coordinated  secondary  amine-amidoalane = complex
[HAI{N(H)(But)CH,CH,NBut] 2. We also report (i) the
synthesis of the corresponding chlorohydrido species
[CI(H)AI{N(H)(Bu')CH,CH,NBu!] 3, as a mixture of two
diastereoisomers, with chirality at the metal and Njpine
centres, (if) the X-ray structure determination of one of these
isomers as a means of substantiating the structure of 2, as well
as structurally authenticating a new class of compounds
outright, and (iii) the X-ray structure determination of
compound 1.

Synthetic details are summarised in, Scheme 1.1 A 2:1ratio
of H3AlNMe; to bis-amine favours compound 1, whereas for a
1:1 ratio compound 2 is isolated. Increasing the amine
component further removes all hydrido groups, affording
compound 4. Compound 3 was isolated from a 1 : 1 reaction of
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Scheme 1 Conditions: OEt,, —80°C

CIH,AINMe; and the amine, as a 1:1 mixture of two
diastereoisomers. The high stability of 2 (and 3) with respect
to hydrogen elimination (decomp. >215 °C) suggests that the
formation of compound 1 possibly proceeds via 2, which then
binds H3Al at the amido centre prior to the second metalla-
tion, and the formation of three-coordinate HAI{N-
(But)CH,;}, is unlikely (such a species would bind NMej or
diethyl ether solvent, or form hydrido bridges like those found
in [{(u-H)AI{N(CMe,CH,),CH,},},]%). The gallium anal-
ogue of 1 is conveniently formed via hydrometallation

(b)

Fig. 1 Projections of (a) [(HAl){u-N(Bu)CH,},] 1, and (b)
[C{H)AI{N(H)(Bu)CH,CH,NBut] 3, with 20% thermal ellipsoids
(arbitrary radii for H-atoms in 3). Selected bond distances (A) and
angles (°): 1 AI-N(1,2) 1.941(7), 1.944(7); Al-H(A,B) 1.42(6),
1.37(7); Al---A12.726(5); AI-N(1)-A189.2; H(A)-Al-H(B) 113(4). 3
Al-H 1.60, Al-C1 2.176(6), Al-N(1,2) 2.00(1), 1.80(1); H-AI-N(1,2)
127, 115; CI-AI-N(1,2) 101.5(4), 116.5(4); N(1)-AI-N(2) 90.6(6);
H-AI-Cl 106.
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involving the appropriate diazabutadiene and H3;GaNMe;.8
Interestingly, the corresponding diazabutadiene reaction
involving H3;AINMe; affords a paramagnetic species,
[{CH(But)N},Al{N(But)CH,},],10 rather than 1.

Results of the X-ray structure determinations of 1 and 3%
are presented in Fig. 1. The asymmetric unit in 1 is half a
molecule, the other half being generated by C, symmetry with
the N atoms and adjacent C atoms in the mirror plane,
although the overall molecular symmetry is close to Cy;
molecules of 3 have only identity symmetry and the diastereo-
isomer isolated in the solid has the chloro group and N-proton
on the same side of the plane of the chelate ring. Four-fold
coordination of aluminium is achieved in 1 by way of bridging
amido centres which is common for amidoaluminium species,
except for (i) the hydrido bridging species [{(u-H)AI{N-
(CMe,CH,;),CH,},}2],4 (i) the aluminates [{(Et;O),Li(p-
H),AI(H)N(SiMes)},]  and  [{(EtO),Li(u-H) AK{N-
(SiMes),},],1t and (i) monomeric 3 and [H,Al(NMe;3){N-
(CMe,CH,),CH;}[2 which involve neutral donor groups.

The four-membered ALN, ring system in 1 is a common
structural unit for dimeric amidoaluminium species.3-13 They
tend to be planar, for example in [{ HAl(u-NMe,)(NMe,)},],3
unless steric buttressing intervenes,!4 where the ALN, ring is
puckered, as in the present case, but here it is a consequence
of the geometrical requirements of the chelate rings. The
angle between the two AIN, planes, 126.7°, is a measure of the
puckering, which is similar to the corresponding value in the
isostructural gallium analogue, 123.7°,8 noting aluminium and
gallium have similar covalent radii. The Al-N distances at
1.943 A are similar to those in structures with planar ALN,
rings, e.g. 1.966(2) A in [{HAl(u-NMe,)(NMe,)},],? and as
expected are longer than where the amido centre is terminally
bound, as in 3, 1.80(1) A, [HoAl(NMe3)N(CMe,CH,),CH,],
1.838(2) A,12 [(u-H)AI{N(CMe,CH,),CH,},],* 1.836 A, and
[{(E;0),Li(p-H),AI(H)N(SiMe3),},]  and  [{(E0),Li(u-
H),Al{N(SiMe3),},],111.86 A. The Al-H distancesin 1 and 3,
and the Al-Cl,N,pine distances in 3 are unexceptional.
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Footnotes

+ Compound 1: N,N'-di-tert-butylethylenediamine (0.15 g, 0.84
mmol) in Et,O (10 ml) was added to a solution of H;AINMe; (0.15 g,
1.69 mmol) in Et,0 (20 ml) over 15 min at —80 °C. After 2 h at room
temperature the solution was filtered and concentrated in vacuo to ca.
10 ml affording colourless crystals on storing at —30 °C for 3 days (0.11
g, 60%); mp 158-159 °C, decomp. 215 °C (grey); 'H NMR (250 MHz,
CeDsg, 25°C): 81.06 (s, 8H, CCHs), 2.78 (s, 4H, CH3), 4.30 (br, AlH);
13C NMR (62.8 MHz, C¢Ds, 25 °C): 6 29.3 (CCH3), 39.1 (CHy), 52.1
(CCHs3); IR: viem~! 1860, 1752 (br, AlH).

Compound 2: N,N’-di-tert-butylethylenediamine (0.75 g, 4.39
mmol) was added to a solution of H3AINMe; (0.39 g, 4.39 mmol) in
Et,0 (40 ml) at —80 °C. After 1 h at ca. 20 °C the solution was filtered
and concentrated in vacuo to ca. 20 ml affording colourless crystals
after 7 days at —26°C (0.74 g, 85%); mp 197.6 °C, decomp. 292 °C
(orange); 'H NMR (200 MHz, C¢Ds, 25 °C): 8 1.04 (1H, s, NH), 1.30,
1.32 (2 X 9H, s, CH3), 2.6 (2H, m, CHy), 2.8 (1H, m, CH3), 3.5 (1H,
m, CH,); 13C NMR (50.2 MHz, Cg¢Ds, 25°C): 8 29.9, 31.1 (CCHz),
45.4, 45.8 (CHy), 51.7, 55.5 (CCH3); Z7A1 NMR (52.11 MHz, C¢Ds,
25°C): & 134.87 (w3 2084 Hz); IR: v/cm~! 1840 (br, AlH). Found: C,
60.2; H, 12.4; N, 14.1. Calc. for C{yHasNyAlL C, 60.0; H, 12.5; N,
14.0%).

Compound 3: as for the synthesis of 2; CIH,AINMe; (0.19 g, 1.54
mmol) gave a white solid which was recrystallised from hexane (15 ml)
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at —30°C for 10 days (0.23 g, 58%); mp 113.5-114.5°C, decomp.
265 °C (yellow); H NMR (200 MHz, C¢Dy, 25 °C): 8 0.84, 0.87 (9H,
s, CH3), 1.38, 1.39 (9H, s, CH,), 2.3, 2.8 (4H, m, CH;) 2.75; 13C
NMR (50.2 MHz, C¢Dg, 25 °C): $27.5,27.7, 30.2, 30.5 (CCH3), 41.4,
42.4, 442, 449 (CHp), 51.0, 51.3, 54.9, 55.9 (CCHs;); IR: v/cm™!
1840.5 (br, AIH).

Compound 4: N,N'-di-tert-butylethylenediamine (0.775 g, 4.49

mmol) was added to a solution of H;AINMejs (0.20 g, 2.25 mmol) in
Et,0 (50 ml) at ~80 °C. After 30 min at —80 °C then 2.5 h at ca. 20 °C
the solution was filtered and volatiles were removed in vacuo. The
pale yellow powder was recrystallised from hexane (15 ml) at ~30°C
over 9 days (0.74 g, 89.2%); mp 174.7 °C, decomp. 279 °C (orange);
!H NMR (200 MHz, C¢Dg, 25°C): 4 1.03, 1.27, 1.37, 1.39 (3 9H, s,
CHs), 2.3 (2H, m, CHy(, 2.65 (3H, m, CH,), 3.1 (1H, m, CH,), 3.2
(2H, m, CH,); 13C NMR (50.2 MHz, C¢Dy, 25 °C): § 28.9, 30.0, 30.8,
31.0 (CCHa), 42.42, 43.91, 45.86, 46.04 (CH};), 51.2,51.5, 51.5, 54.6
(CCHz;); IR: v/cm~1 3246 (s, NH).
t Crystal structure determinations (T = 296 K; Enraf-Nonius CAD4
diffractometer, crystals mounted in capillaries): compound 1,
CoH6ALLN,, M = 228.3, orthorhombic, space group, Pnma, a =
12.818(7), b = 10.693(3), ¢ = 10.834(3) A, U = 1485 A3, F(000) =
504; Z = 4, D = 1.021 g cm~3, Mo-Ka, A = 0.71069 A, u(Mo-ka) =
1.24 cm~!. specimen 0.20 x 0.20 x 0.25 mm, 1222 unique reflections,
520 with I > 30(/) used in the refinement, 26,,, = 46°. Compound 3,
CioH24AICIN,, M = 234.8, orthorhombic, space group Pbca, a =
12.019(1), b = 12.922(1), ¢ = 18.802(2) A, U = 2920 A3, F(000) =
1024; Z = 8, D, = 1.068 g cm~3, Mo-Ka, A = 0.71069 A, w(Mo-Ka) =
1.2 em~1, specimen 0.20 X 0.25 X 0.40 mm, 1465 unique reflections,
675 with [ > 30(/) used in the refinement, 20, = 50°.

The structures were solved by direct methods and refined by
full-matrix least-squares using SHELX. For 1 H atoms attached to Al
and the methylene H atoms were located and refined in x,y, z, Uis,; for
3 the analogous H atoms were included as invariants. Unit weights
were used and the final residuals were R = 0.070, 0.076, R , = 0.077,
0.085, for 1 and 3 respectively. Atomic coordinates, bond lengths and
angles, and thermal parameters have been deposited at the Cam-
bridge Crystallographic Data Centre. See Notice to Authors, Issue
No. 1.
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