Boat-shaped Co_{6} Carbonyl Cluster Derivatives Containing a Semi-interstitial P Atom and Bridging Thiolate or Heterocyclic Phosphido Ligands

Xiang Hu,* Oi-Wang Liu, Shu-Tang Liu, Li-Ping Zhang and Bao-Shan Wu
Department of Chemistry, Inner Mongolia University, Huhhot 010021, PR China

Reactions of $\mathrm{MeSPCl}_{2}, \mathrm{EtSPCl}_{2}$ and $\mathrm{Cl} \mathrm{PSCH}_{2} \mathrm{CH}_{2} \mathrm{~S}$, respectively with $\mathrm{CO}_{2}(\mathrm{CO})_{8}$ in the presence of zinc powder give the Co_{6} clusters $\left[\mathrm{Co}_{6}\left(\mu_{6}-\mathrm{P}\right)(\mu-\mathrm{SMe})_{3}(\mathrm{CO})_{12}\right] \mathbf{1},\left[\mathrm{Co}_{6}\left(\mu_{6}-\mathrm{P}\right)(\mu-\mathrm{SEt})_{3}(\mathrm{CO})_{12}\right] \mathbf{2}$ and $\left[\mathrm{Co}_{6}\left(\mu_{6}-\mathrm{P}\right)\left(\mu_{4}-\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)\left(\mu-\mathrm{PSCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)\right.$ (CO) 1_{12}] respectively; in 1 six Co atoms form a boat-shaped array consisting of a basal square of four cobalt atoms with two opposite edges bridged by two apical Co atoms, with the metal arrangement surrounding a semi-interstitial P atom, and with two μ-SMe ligands bridging underneath the basal square and another bridging μ-SMe side-linked to the basal square.

There is a limited range of core geometries associated with Co_{6} carbonyl clusters. Closed structures include the compact octahedral arrangement and a few looser trigonal prismatic cages \{e.g. $\left[\mathrm{Co}_{6}\left(\mu_{6}-\mathrm{C}\right)\left(\mu_{3}-\mathrm{S}\right)_{2}(\mathrm{CO})_{12}\right],{ }^{1}$ and $\operatorname{PPN}\left[\mathrm{Co}_{6}\left(\mu_{6}-\right.\right.$ $\mathrm{N})(\mathrm{CO})_{15} \mathrm{I}^{2}$, which contain interstitial carbon or nitrogen atoms $\}$. Open structures can be obtained by the insertion of the bulky P atom or a C_{2} group, two examples being $\left[\mathrm{Co}_{6}\left(\mu_{6}-\mathrm{P}\right)(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{14}\right]^{-, 3} \quad 4$, and $\left[\mathrm{Co}_{6}\left(\mu_{6}-\mathrm{C}_{2}\right)\left(\mu_{4}-\mathrm{S}\right)(\mu-\right.$ $\mathrm{CO})_{6}(\mathrm{CO})_{8},{ }^{4}$ 5. In 4, the six metal atoms form a twisted boat arrangement surrounding a semi-interstitial P atom. In 5 , the six metal atoms form a boat-shaped open array which contains a CO_{4} square with two opposite edges bridged by two cobalt atoms; the metal arrangement surrounds a semi-interstitial dicarbide group. Here, the C_{2} unit is inserted into a trigonal-prismatic Co_{6} array by breaking an edge and widening the distance between the two apical Co atoms. We report here the synthesis and characterization of three more boatshaped Co_{6} carbonyl clusters which contain a semi-interstitial P atom and bridging thiolate or heterocyclic phosphido ligands.

The reaction of MeSPCl_{2} and $\mathrm{EtSPCl} 2_{2}$ with $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ (toluene, $30-43{ }^{\circ} \mathrm{C}, 13 \mathrm{~h}$) in the presence of zinc powder afforded, inter alia, the products $\left[\mathrm{Co}_{4}\left(\mu_{4}-\mathrm{PSMe}\right)_{2}(\mu-\right.$ $\left.\mathrm{CO})_{2}(\mathrm{CO})_{8}\right],\left[\mathrm{Co}_{6}\left(\mu_{6}-\mathrm{P}\right)(\mu-\mathrm{SMe})_{3}(\mathrm{CO})_{12}\right]$ 1, $\left[\mathrm{Co}_{4}\left(\mu_{4}-\mathrm{PSEt}\right)_{2^{-}}\right.$ $\left.(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{8}\right],\left[\mathrm{Co}_{6}\left(\mu_{6}-\mathrm{P}\right)(\mu-\mathrm{SEt})_{3}(\mathrm{CO})_{12}\right], 2$, and $\left[\mathrm{Co}_{7}\left(\mu_{7}-\right.\right.$ $\left.\mathrm{S})\left(\mu_{4}-\mathrm{PSEt}\right)(\mu-\mathrm{SEt})_{2}(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{12}\right],{ }^{5} \quad 6$, respectively. The structure of the Co_{7} cluster 6 has been reported elswhere. ${ }^{5}$ The yields of $\mathbf{1}$ and 2 are 4 and 7% respectively after chromatography (benzene-light petroleum) and recrystallization (n $\mathrm{C}_{6} \mathrm{H}_{14}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The reaction of $\mathrm{Cl} \stackrel{\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}}{ }$ with $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ (toluene, $30-43{ }^{\circ} \mathrm{C}, 13 \mathrm{~h}$) in the presence of zinc powder gave $\left[\mathrm{Co}_{6}\left(\mu_{6}-\mathrm{P}\right)\left(\mu_{4}-\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)(\mu-\right.$ $\left.\left.\mathrm{PSCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)(\mathrm{CO})_{12}\right] \mathbf{3}$ after similar separation and purifica-

tion in 13% yield. ${ }^{6}$ Analytical data ($\mathrm{C}, \mathrm{H}, \mathrm{P}$) and $\operatorname{IR}\left(v_{\mathrm{CO}}\right),{ }^{1} \mathrm{H}$ NMR and MS spectra of the three Co_{6} clusters $\mathbf{1 - 3}$ are consistent with the proposed structures. \dagger The molecular structure of $\mathbf{1}$ is shown in Fig. $1 . \ddagger$

Cluster 1 has C_{s} symmetry, with a mirror plane through $\mathrm{P}(1), \mathrm{Co}(3), \mathrm{Co}(4), \mathrm{S}(2)$ and bisecting the $\mathrm{Co}(1)-\mathrm{Co}\left(1^{\prime}\right)$ and $\mathrm{Co}(2)-\mathrm{Co}\left(2^{\prime}\right)$ sides of the $\mathrm{Co}_{4}{ }^{2}$ base. The boat-shaped open array of Co_{6} atoms contains a Co_{4} basal square with two opposite edges bridged by two apical Co atoms and the metal atoms surround a semi-interestitial P atom. The $\mathrm{Co}_{6} \mathrm{P}$ framework could be viewed as arising from insertion of a P atom into a trigonal-prismatic Co_{6} array by breaking a square edge and widening the distance between the two apical Co atoms.

The eight Co -Co bond lengths $[2.461(6)-2.651(6) \AA]$ and the six $\mathrm{Co}-\mathrm{P}$ bond lengths $[2.112(8)-2.261(7) \AA]$ are consistent with the values found in many cobalt carbonyl clusters, including 4 and 5. The apical $\mathrm{Co}(3)$ and $\mathrm{Co}(4)$ atoms bear three terminal carbonyl groups whereas the basal $\mathrm{Co}(1)$ and

Fig. 1 Molecular structure of $\left[\mathrm{Co}_{6}\left(\mu_{6}-\mathrm{P}\right)(\mu-\mathrm{SMe})_{3}(\mathrm{CO})_{12}\right]$ 1. Bond distances $(\AA): \mathrm{Co}(1)-\mathrm{Co}\left(1^{\prime}\right) 2.651(6), \mathrm{Co}(1)-\mathrm{Co}(2) 2.616(4), \mathrm{Co}(1)-$ $\mathrm{Co}(4)$ 2.593(5), $\mathrm{Co}(2)-\mathrm{Co}\left(2^{\prime}\right) 2.461(6), \mathrm{Co}(2)-\mathrm{Co}(3) 2.608(5), \mathrm{Co}(1)$ -P 2.261(7), $\mathrm{Co}(2)-\mathrm{P} 2.248(8), \mathrm{Co}(3)-\mathrm{P} 2.112(8), \mathrm{Co}(4)-\mathrm{P} 2.21(1)$, $\mathrm{Co}(1)-\mathrm{S}(1) \quad 2.216(7), \mathrm{Co}(2)-\mathrm{S}(1)$ 2.152(7), $\mathrm{Co}(2)-\mathrm{S}(2) 2.210(8)$, $\mathrm{Co}(3)-\mathrm{C}(4) 1.92(4), \mathrm{Co}(4)-\mathrm{O}(4) 1.19(5)$. Bond angles $\left({ }^{\circ}\right): \mathrm{Co}(2)-$ $\mathrm{Co}(1)-\mathrm{Co}\left(1^{\prime}\right) 87.9(1), \mathrm{Co}(2)-\mathrm{Co}\left(2^{\prime}\right)-\mathrm{Co}(1) 92.1(1), \mathrm{Co}(3)-\mathrm{Co}(2)-$ $\mathrm{Co}(1) \quad 103.5(2), \quad \mathrm{Co}(4)-\mathrm{Co}(1)-\mathrm{Co}(2) \quad 106.9(2), \quad \mathrm{Co}(3)-\mathrm{P}-\mathrm{Co}(4)$ 134.3(4), $\mathrm{Co}(3)-\mathrm{C}(4)-\mathrm{O}(4) 171(4)$.

Fig. 2 (a) $\mathrm{Co}_{6}\left(\mu_{6}-\mathrm{E}\right)\left(\mu_{4}-\mathrm{E}^{\prime}\right)$ and $(b) \mathrm{Co}_{7}\left(\mu_{7}-\mathrm{E}\right)\left(\mu_{4}-\mathrm{E}^{\prime}\right)$ skeletons
$\operatorname{Co}\left(1^{\prime}\right)$ have two and $\operatorname{Co}(2)$ and $\operatorname{Co}\left(2^{\prime}\right)$ only one. One terminal carbonyl group, $\mathrm{C}(4)-\mathrm{O}(4)$, in 1 has an unusually long Co-C(4) distance [1.92(4) \AA].

Cluster 4 has two bridging CO groups in a position underneath the twisted basal Co_{4} square, opposite to the semi-interstitial P atom above. Likewise, 5 contains a facebridging $\mu_{4}-\mathrm{S}$ atom, and $\mathbf{1}$ includes two bridging SMe groups in these underneath positions. The Co_{6} boat-shaped array may require a semi-interstitial μ_{6} - E unit above the basal Co_{4} square and also a $\mu_{4}-\mathrm{E}^{\prime}$ unit (two bridging CO in 4, S atom in 5 and two bridging SMe in 1) below, to allow an attractive interligand $\mathrm{E} \cdots \mathrm{E}^{\prime}$ interaction ${ }^{7}$ for stabilization of this type of Co_{6} open structure. Another SMe ligand in $\mathbf{1}$ is side-linked to the basal Co_{4} square and the symmetry of $\mathbf{1}\left(C_{s}\right)$ is then lowered from that of $5\left(C_{2 v}\right)$. Interestingly, the skeletal geometry of the $\mathrm{Co}_{7}\left(\mu_{7}-\mathrm{S}\right)\left(\mu_{4}-\mathrm{PSEt}\right)$ part of cluster 6 also shows an $E\left(\mu_{7}-S\right) \cdots E^{\prime}\left(\mu_{4}-\right.$ PSEt $)$ attractive interligand interaction, tilted to the side of the Co_{4} base of the Co_{7} unit [Fig. 2(b)]. The electron counts of $\mathbf{1 , 4}$ and 5 indicate that each Co atom in $\mathbf{4}$ and 5 satisfies the 18 -electron rule, but the case is complicated in 1. On average each Co atom obeys the 18 electron rule, but the valence electron numbers around $\mathrm{Co}(1)$, $\operatorname{Co}\left(1^{\prime}\right)$ are $18^{1 / 3}$ and around $\operatorname{Co}(2), \operatorname{Co}\left(2^{\prime}\right)$ and $\operatorname{Co}(3), \operatorname{Co}(4)$ are 175%, respectively. The electron deficiency of $\mathrm{Co}(2), \mathrm{Co}\left(2^{\prime}\right)$ may demand shorter $\mathrm{Co}(2)-\mathrm{Co}\left(2^{\prime}\right)[2.461(6) \AA]$ and $\mathrm{Co}(2)-\mathrm{S}(1)$ bond lengths [2.152(7) \AA] to increase the electron density around the valence shell of $\mathrm{Co}(2), \mathrm{Co}\left(2^{\prime}\right)$ to balance the deficiency. In contrast, the electron surplus of $\mathrm{Co}(1), \mathrm{Co}\left(1^{\prime}\right)$ causes longer $\mathrm{Co}(1)-\mathrm{Co}\left(1^{\prime}\right)[2.651(6) \AA]$ and $\mathrm{Co}(1)-\mathrm{S}(1)$ bonds [2.216(7) \AA].

During the reactions, the ligand precursors RSPCl_{2} ($\mathrm{R}=$ Me, Et) and $\mathrm{Cl} \mathrm{PSCH}_{2} \mathrm{CH}_{2} \mathrm{~S}$ are cleaved to yield a variety of fragments as ligands, namely $\mu_{7^{-}} \mathrm{S}, \mu_{6}-\mathrm{P}, \mu_{4}-\mathrm{PSR}, \mu_{4^{-}}$ $\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}, \mu-\mathrm{PSCH}_{2} \mathrm{CH}_{2} \mathrm{~S}$ and μ-SR. These are the essential constituents to build the novel Co_{7} and Co_{6} carbonyl clusters which contain semi-interstitial P or S atoms and bridging P or S-containing ligands.

We thank the National Science Foundation of China for financial support.

Received, 18th May 1993; Com. 3/02840B

Footnotes

\dagger Selected spectroscopic data for 1: $v_{\max } / \mathrm{cm}^{-1}(\mathrm{CO})\left(n-\mathrm{C}_{6} \mathrm{H}_{14}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $2086 \mathrm{~m}, 2053 \mathrm{vs}, 2042 \mathrm{vs}, 2030 \mathrm{~m}, 1985 \mathrm{w} ;{ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right) 1.26,1.34$ ($2 \times \mathrm{S}, 2 \times 3 \mathrm{H}, \mathrm{SMe}$), 2.46 (s, $3 \mathrm{H}, \mathrm{SMe}$); FD-MS $m / z 861.5$ (calc. 861.97). For 2: $v_{\max } / \mathrm{cm}^{-1}(\mathrm{CO})\left(n-\mathrm{C}_{6} \mathrm{H}_{14}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2085 \mathrm{~m}, 2053 \mathrm{vs}$, 2041vs, $2030 \mathrm{~m}, 1984 \mathrm{w} ;{ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right) 1.45(\mathrm{~m}, 2 \times 5 \mathrm{H}, \mathrm{SEt})$, 2.68 (s, $5 \mathrm{H}, \mathrm{SEt}$); FD-MS $m / z 903.6$ (calc. 904.06). For 3: $v_{\text {max }} / \mathrm{cm}^{-1}$ (CO) $\left(n-\mathrm{C}_{6} \mathrm{H}_{14}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2080 \mathrm{~m}, 205 \mathrm{Ivs}, 2031 \mathrm{vs}, 2029 \mathrm{~m}, 2000 \mathrm{w} ;{ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right) 1.52,2.13,2.55\left(\mathrm{~m}, 2 \times 2 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 3.60,3.72$ (d, $2 \times 2 \mathrm{H}, \mathrm{PSCH}_{2} \mathrm{CH}_{2} \mathrm{~S}$); FD-MS: $m / z 935.5$ (calc. 936.00). \ddagger Crystal data for $1:\left[\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{Co}_{6} \mathrm{O}_{12} \mathrm{PS}_{3}\right], M=861.97$, orthorhombic, space group $P m n 2_{1}, a=10.962(9), b=9.634(5), c=13.01(1) \AA, V=$ $1374 \AA^{3}, Z=2, D_{\mathrm{c}}=2.08 \mathrm{~g} \mathrm{~cm}^{-3}$, Rigaku AFC 5R diffractometer, $2 \theta_{\text {max }}=50^{\circ}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=38.67 \mathrm{~cm}^{-1}$, crystal dimensions 0.40×0.30 $\times 0.2 \mathrm{~mm}, 810$ observed data $[I \geqslant 3 \sigma(I)]$ from 1462 data measured were refined to $R=0.053, R_{\mathrm{w}}=0.059$ (statistical weights). Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

References

1 G. Bor, G. Gervasio, R. Rossetti and P. L. Stanghellini, J. Chem., Soc., Chem. Commun., 1978, 841.
2 S. Martinengo, G. Ciani, A. Sironi, B. T. Heaton and J. Mason, J. Am. Chem. Soc., 1979, 101, 7095.

3 G. Ciani and A. Sironi, J. Organomet. Chem., 1983, 241, 385.
4 G. Gervasio, R. Rossetti, P. L. Stanghellini and G. Bor, Inorg. Chem., 1984, 23, 2073.
5 S. T. Liu, X. Hu, Q. W. Liu and W. T. Zhang, Chin. Chem. Lett., 1991, 2, 325.
6 L. P. Zhang, MSc thesis, Inner-Mongolia University, May 1993.
7 R. C. Ryan and L. F. Dahl, J. Am. Chem. Soc., 1975, 97, 6904.

