Novel η^3 -Cyclopentenoyl Complexes of Ruthenium(IV): X-Ray Structures of Ru(η^5 -C₅H₅)(η^3 -C₅H₅O)Br₂ and Ru(η^5 -C₅H₅)(η^3 -C₅H₅O)Br₂

Karl Kirchner,* ^a Kurt Mereiter^b and Roland Schmid^a

^a Institute of Inorganic Chemistry and ^b Institute of Mineralogy, Crystallography, and Structural Chemistry, Technical University of Vienna, Getreidemarkt 9, A-1060 Vienna, Austria

Ru(η^5 -C₅H₅)(η^4 -C₅H₄O)Br 1 reacts with Br₂ to yield the novel η^3 -allyl complex Ru(η^5 -C₅H₅)(η^3 -C₅H₄OBr)Br₂ 3; treatment of Ru(η^5 -C₅H₅)(η^4 -C₈H₁₂)Br 5 with 3-bromo-4-cyclopentene-1-one gives the parent cyclopentenoyl complex Ru(η^5 -C₅H₅O)Br₂ 6, which in the presence of NEt₃ is readily converted to the cyclopentadienone complex 1; X-ray structures of 3 and 6 are presented.

Transition-metal complexes featuring η^4 -cylopentadienone as a ligand display novel and interesting reactivity.^{1,2} Here, we report the synthesis and characterization of η^3 -cyclopentenoyl Ru^{IV} complexes, formed by reaction of the neutral cyclopentadienone complexes Ru(η^5 -C₅H₅)(η^4 -C₅H₄O)Br 1³ and Ru(η^5 -C₅H₅)(η^4 -C₅H₄O)Cl 2³ with Br₂ and Cl₂, respectively. η^3 -Cyclopentenoyl Ru^{IV} complexes are shown to be potential precursors for cyclopentadienone Ru^{II} complexes.

A suspension of 1 in MeNO₂ is treated with 1 equiv. of Br₂ at 70 °C for 2 h. The red complex obtained is identified as the η^3 -allyl complex Ru(η^5 -C₃H₃)(η^3 -C₅H₄OBr)Br₂ 3 by means of ¹H, ¹³C{¹H} NMR and IR spectroscopy, and elemental analysis (Scheme 1).† The recovered yield is 90%. Complex 3 is only sparingly soluble in most common organic solvents (MeNO₂ and Me₂SO have proved to be the best) and is air stable as a solid and in solution. The characteristic spectroscopic features comprise a marked down-field shift of the ¹H and ¹³C resonances, indicative of the higher oxidation state of the ruthenium ion. The ¹³C resonance of the carbonyl carbon atom is observed at δ 198.0 (*cf.* the respective ¹³C resonances of η^4 -cyclopentadienones, which are found at *ca*. δ 180).^{1,4} The ketonic $v_{C=O}$ is shifted from 1685 cm⁻¹ in 1³ to 1718 cm⁻¹ in 3, owing to an increase in bond order.

A structural view of 3, determined by X-ray diffraction and depicted in Fig. 1,‡ clearly demonstrates that bromine

addition on the cyclopentadienone has occurred *anti* to the coordinated ruthenium and exclusively α to the ketone functional group. The enyl function of the cyclopentenoyl ligand is bonded nearly symmetrically to the metal with the Ru–C bond to the central enyl carbon atom C(9) [2.116(7) Å] being distinctly shorter than those to the outer carbon atoms C(8) and C(10) [2.219(7) and 2.232(8) Å, respectively]. This bonding pattern is similar to that found for the η^3 -cyclobutenyl ligand in Ru(η^5 -C₅H₅)(η^3 -C₄H₄OMe)Cl₂.⁵ The Ru–Br(1) and Ru–Br(2) bond distances are nearly identical, being 2.537(1) and 2.533(1) Å, respectively.

Reaction of 2 with Cl_2 in CH_2Cl_2 at ambient temperature gives the analogous chloro complex $Ru(\eta^5-C_5H_5)-(\eta^3-C_5H_4OCl)Cl_2$ 4, albeit in a lower yield (45%).[†]

Ru^{IV} η^3 -allyl complexes are typically prepared by oxidative addition of allylic halides to suitable Ru^{II} precursors, such as Ru(η^5 -C₅H₅)(η^4 -C₈H₁₂)Br **5**⁶ (C₈H₁₂ = cycloocta-1,5-diene) or Ru(η^5 -C₅H₅)(CO)₂Br.⁷ Following this procedure, treatment of 3-bromo-4-cyclopentene-1-one⁸ with **5** in ethanol gives a red precipitate of the parent η^3 -cyclopentenoyl complex Ru(η^5 -C₅H₅)(η^3 -C₅H₅O)Br₂ **6** in 86% yield (Scheme 2). Complex **6** is characterized by ¹H, ¹³C{¹H} NMR and IR

Fig. 1 ORTEP drawing (30% ellipsoids) of $Ru(\eta^{5}-C_{5}H_{5})(\eta^{3}-C_{5}H_{4}OBr)Br_{2}$ 3. Selected bond lengths (Å) and bond angles (°): Ru-Br(1) 2.537(1), Ru-Br(2) 2.533(1), $Ru-C(1-5)_{av}$ 2.215(8), Ru-C(8) 2.219(7), Ru-C(9) 2.116(7), Ru-C(10) 2.232(8), C(6)-C(7), 1.528(11), C(7)-C(8) 1.495(11), C(8)-C(9) 1.418(11), C(9)-C(10)1.413(11), C(10)-C(6) 1.459(11), C(6)-O 1.206(10), C(7)-Br(3)1.981(7); Br(1)-Ru-Br(2) 85.03(3), C(7)-C(8)-C(9) 109.3(6), C(8)-C(9)-C(10) 105.7(6), C(9)-C(10)-C(6) 109.5(7).

162

Fig. 2 ORTEP drawing (30% ellipsoids) of $Ru(\eta^{5}-C_{5}H_{5})(\eta^{3}-C_{5}H_{5}O)Br_{2}$ 6. Selected bond lengths (Å) and bond angles (°): Ru-Br(1) 2.530(1), Ru-Br(2) 2.544(1), Ru-C(1-5)_{av} 2.194(9), Ru-C(8) 2.251(7), Ru-C(9) 2.107(7), Ru-C(10) 2.224(7), C(6)-C(7) 1.509(11), C(7)-C(8) 1.507(12), C(8)-C(9) 1.427(11), C(9)-C(10) 1.413(10), C(10)-C(6) 1.467(11), C(6)-O 1.208(10); Br(1)-Ru-Br(2) 84.06(4), C(7)-C(8)-C(9) 109.0(7), C(8)-C(9)-C(10) 104.6(6), C(9)-C(10)-C(6) 109.2(6).

spectroscopy, and by elemental analysis.§ The spectroscopic properties of this complex are similar to that of **3**; the geminal methylene protons of the η^3 -C₅H₅O-ring give rise to two characteristic doublets in the ¹H NMR spectrum at δ 3.39 (d, 1 H, ²J_{HH} 19.5 Hz) and 2.43 (d, 1 H, ²J_{HH} 19.5 Hz). The ¹³C resonance of the carbonyl carbon atom is observed at δ 204.6 and the v_{C=O} stretching frequency occurs at 1717 cm⁻¹. X-Ray diffraction analysis of crystals of **6** establishes the structure given in Fig. 2.‡ The overall stereochemistry of **6** is remarkably similar to that of **3** and is not discussed here.

The reactivities of **3** and **6**, however, are different. Preliminary investigations reveal that on treatment of **6** with 1 equiv. of NEt₃ in DMF solution, the neutral cyclopentadienone complex **1** is formed in 70% isolated yield (Scheme 2) while the same treatment of **3** does not give the corresponding 5-bromo-2,4-cyclopentadiene-1-one Ru^{II} complex. Reaction of **6** with Me₂SO at 80 °C for 3 h results in the liberation of 3-bromo-4-cyclopentene-1-one whereupon a new, not yet identified complex is formed, presumably a cyclopentadienyl Ru^{II} complex (as inferred from ¹H NMR spectroscopy).

Oxidative additions in octahedral d⁶-systems, by implication, involve ligand displacement. For 1 and 2, however, no ligand substitution takes place—the oxidative addition of halogens being accompanied by both a hapticity change and nucleophilic addition of halide on the cyclopentadienone ring, adjacent to the ketonic group. These reactions have no precedent in ruthenium chemistry. Complexes 3 and 4 appear to be the first Ru^{IV} complexes having substituted η^3 -cyclopentenoyl ligands.

Financial support by the Fond zur Förderung der wissen-

schaftlichen Forschung is gratefully acknowledged (Project No. 8662).

Received, 2nd September 1993; Com. 3/05276A

Footnotes

[†] Selected data for 3: Satisfactory elemental analysis for C, H, Br; ¹H NMR [250.13 MHz, (CD₃)₂SO] δ 6.41 (m, 1 H), 6.08 (s, 5 H), 5.73 (m, 1 H), 5.17 (t, 1 H), 5.11 (t, 1 H); ¹³C{¹H} NMR (62.68 MHz, (CD₃)₂SO δ 198.0 (C=O), 105.4, 99.0 (C₅H₅), 74.1, 69.6, 50.0; IR v/cm⁻¹ (KBr pellet) 1718s (C=O).

For 4: Satisfactory elemental analysis for C, H, Cl; ¹H NMR (250.13 MHz, CD₃CN) δ 6.16 (m, 1 H), 5.83 (s, 5 H), 5.61 (m, 1 H), 5.07 (t, 1 H), 4.39 (m, 1 H); IR v/cm⁻¹ [poly(chlorotrifluoroethylene)] 1722s (C=O).

[‡] Crystal data for 3: C₁₀H₉OBr₃Ru, M = 485.96, red crystals, monoclinic, space group $P2_1/n$, a = 22.235(3), b = 6.937(1), c = 7.853(1) Å, $\beta = 91.00(1)^\circ$, V = 1211.1(3) Å³, Z = 4, $D_c = 2.665$ g cm⁻³, $\mu = 110.5$ cm⁻¹, F(000) = 904, T = 24 °C. A plate-like crystal fragment (0.018 × 0.07 × 0.37 mm) was used for data collection (Philips PW 1100 diffractometer, Mo-Kα radiation). Of 2590 reflections collected ($2\theta_{max} = 25^\circ$, correction for Lorentz and polarization effects, and absorption applied), 2136 were independent, and 1468 with $F_0 > 6\sigma(F_0)$ were used for the least-squares refinement after solving the structure with direct methods. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in idealized positions. At final convergence, R = 0.029 and $R_w = 0.031$, and the final difference electron-density synthesis showed minimum and maximum values of -0.53 and +0.82 e Å⁻³.

Crystal data for 6: $C_{10}H_{10}OBr_2Ru$, M = 407.07, red crystals, orthorhombic, space group $P2_12_12_1$, a = 13.085(3), b = 12.107(3), c = 6.937(2) Å, V = 1099.0(5) Å³, Z = 4, $D_c = 2.460$ g cm⁻³, $\mu = 85.7$ cm⁻¹, F(000) = 768, T = 24 °C. A crystal plate ($0.044 \times 0.20 \times 0.23$ mm) was used for data collection (Philips PW1100 diffractometer, Mo-K α radiation). Of 2331 reflections collected ($2\theta_{max} = 25^\circ$, correction for Lorentz and polarization effects, and absorption applied), 1945 were independent, and 1720 with $F_o > 6\sigma(F_o)$ were used for the least-squares refinement after solving the structure with direct methods. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in idealized positions. At final convergence, R = 0.030 and $R_w = 0.035$ and the final difference electron-density synthesis showed minimum and maximum values of -0.79 and +0.61 e Å⁻³.

For both structures, atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

 $Selected NMR and IR data for 6: {}^{1}H NMR (250.13 MHz, CD_3NO_2) \\ 6.27 (m, 1 H), 5.82 (m, 1 H), 5.69 (s, 5 H), 5.13 (t, 1 H), 3.43–3.36 (d, 1 H, J 19.5 Hz), 2.47–2.39 (d, 1 H, J 19.5 Hz); {}^{1}C{}^{1}H NMR (62.68 MHz, (CD_3)_2SO \\ \delta 204.6 (C=O), 106.8, 97.8 (C_5H_5), 77.6, 74.4, 42.0; IR v/cm^{-1} [poly(chlorotrifluoroethylene)] 1717s (C=O).$

References

- K. Kirchner and H. Taube, J. Am. Chem. Soc., 1991, 113, 7039;
 K. Kirchner, K. Mereiter, R. Schmid and H. Taube, Inorg. Chem., 1993, in the press.
- 2 L. S. Liebeskind and A. Bombrun, J. Am. Chem. Soc., 1991, 113, 8736.
- 3 T. P. Smith, K. S. Kwan, H. Taube, A. Bino and S. Cohen, *Inorg. Chem.*, 1984, 23, 1943.
- 4 K. Kirchner, H. Taube, B. Scott and R. D. Willett, *Inorg. Chem.*, 1993, **32**, 1430.
- 5 M. O. Albers, D. C. Liles, D. J. Robinson, A. Shaver and E. Singleton, *Organometallics*, 1987, **6**, 2347.
- 6 M. O. Albers, D. J. Robinson, A. Shaver and E. Singleton, Organometallics, 1986, 5, 2199.
- 7 H. Nagashima, K. Mukai and K. Itoh, Organometallics, 1984, 3, 1314.
- 8 C. H. Depuy, M. Isaaks, K. L. Eilers and G. F. Morris, J. Org. Chem., 1964, 20, 3503.