Biosynthesis of Vitamin B₁₂: Use of Specific ¹³C-Labelling for Structural Studies on Factor IV

Alex I. D. Alanine, ^aKoji Ichinose, ^aDenis Thibaut, ^bLaurent Debussche, ^bN. Patrick J. Stamford, ^aFinian J. Leeper, ^a Francis Blanche^{* b} and Alan R. Battersby^{* a}

 ^a University Chemical Laboratory, Lensfield Road Cambridge, UK CB2 1EW
 ^b Department Analyse, Centre de Recherche de Vitry-Alfortville, Rhône-Poulenc Rorer, BP14, F-94403 Vitry-sur-Seine Cedex, France

[1,10,20-¹³C₃]Uro'gen III is unambiguously synthesised for enzymic conversion into precorrin-4 isolated after aerial oxidation as two epimers of Factor IV, the ¹³C NMR spectra of which rigorously confirm the presence of a C-1 acetyl group in precorrin-4; attachment of the fourth methyl group at C-17 of precorrin-4 is also confirmed by related ¹³C-labelling experiments.

The availability of mutants of *Pseudomonas denitrificans* in which the *cobM* gene had been inactivated¹ allowed the biosynthetic pathway to vitamin B₁₂ to be interrupted at the stage of the tetramethylated intermediate, precorrin-4. This was isolated² as its oxidised form called Factor IV which could be separated into two isomers, A and B. There is good evidence that Factor IVA and Factor IVB are epimers and the formation of such epimers is a familiar feature of research on vitamin B₁₂ intermediates.

Factor \overline{IVA} was produced in different ¹³C-labelled forms from ¹³C-labelled samples of 5-aminolaevulinic acid (ALA) as in earlier structure determinations in this area.³⁻⁶ ¹³C NMR then led to structure **4a** for Factor IV and tentative signal assignments were made, the evidence as a whole being self-consistent. The aim of the present work was to provide unimpeachable evidence especially for the placement of the acetyl group at C-1 but also for the C-methylation at C-17.

The former studies depended on the unambiguous synthesis of $[1,10,20^{-13}C_3]$ uroporphyrin III octamethyl ester 15 as

outlined in Scheme 1. The [5-¹³C]pyrrole⁷ **6**, 90 atom% ¹³C, was alkylated with the pyrrole **7** under acid-catalysed conditions. Surprisingly, the required dipyrromethane **8** was accompanied by an appreciable amount of a rearrangement product **12**, the ¹H NMR spectrum of which showed the aldehydic proton as a singlet not split by adjacent ¹³C whereas the corresponding signal from the desired product **8** was a doublet as expected. The mechanism of formation of **12** deserves attention.

Pure unrearranged material 8 was isolated from the mixture, deformylated using a rhodium(1) catalyst⁸ and finally the benzyloxycarbonyl group was removed from 9 by the standard steps $9 \rightarrow 10 \rightarrow 11$ in Scheme 1. The product 11 was immediately condensed with the [formyl-¹³C₂]diformyl dipyrromethane 13 prepared in turn by Vilsmeier formylation of the dicarboxylic acid⁹ 14 using 99.5 atom% dimethyl[formyl-¹³C]formamide. [1,10,20-¹³C₃]Uroporphyrin III octamethyl ester 15 was isolated in 40–45% yield and a small part was converted into its zinc complex for NMR spectroscopy. The

signals (Table 1) confirmed specific ¹³C-labelling entirely at the required sites.

The remaining porphyrin 15 was hydrolysed and the product was reduced with sodium amalgam to yield $[1,10,20^{-13}C_3]$ uroporphyrinogen III 1 which was converted into $[1,10,20^{-13}C_3]$ precorrin-3A† 2 by enzymic methylation using isolated, over-produced enzymes.¹⁰ The product 2 was isolated after aerial oxidation as the isobacteriochlorin and the corresponding octamethyl ester 3 was purified. Its ¹³C NMR spectrum showed only three signals (Table 1) so confirming specific labelling. After the methyl ester groups of 3 had been hydrolysed, the derived acid was incubated with the enzyme system from the *cobM* mutant of *P. denitrificans* where *in situ* reduction occurs to form $[1,10,20^{-13}C_3]$ precorrin-3A 2 which was further converted into precorrin-4. Aerial oxidation and isolation as above gave Factor IVA and Factor IVB.

The ¹³C NMR spectrum of Factor IVA (Table 1) gave the important result that the signals from both the ketonic

carbonyl group (originally C-20) at δ 210.9 and from C-1, δ 84.2, were doublets (J 39 Hz) thus rigorously confirming that the acetyl group in Factor IVA, and therefore also in precorrin-4, 5 or a tautomer, is attached at C-1. The signal from C-10 was a singlet as expected. The NMR spectrum also showed that the chromatographic fraction composed mainly of Factor IVA also contained *ca.* 20% of Factor IVB.

Factor IVB gave a 13 C NMR spectrum (Table 1) in full agreement with that above in that the signals from the ketonic carbonyl group and C-1 were both doublets (*J* 39 Hz).

It had earlier seemed likely² that the A and B isomers of Factor IV are related as epimers at C-8. However, the additional data in Table 1 showing that the change A to B substantially affects the chemical shift of the signal from the ketonic carbonyl group whereas that from C-10 is much less affected indicates that epimerisation at C-3 must also be considered. In addition, a small amount of another isomer Factor IVC is formed which runs chromatographically with

Table 1 Relevant ¹³C NMR data at 100.6 MHz for Factor IV 4 and its precursors^a

	Chemical shifts, δ , and coupling, J/Hz						
Substance	C-1	C-10	C-17	C-20	CO of MeCO	Me of MeCO	
 Uroporphyrin III ester ^b 15	147.3	98.4		98.5			
$(as Zn^{II} complex)$	d, 70	s		d, 70			
Ìsobacteriochlorin ^c 3	153.0	95.5		104.8			
	d, 79	s		d, 79			
Factor IVA ^d 4b	84.2	95.9	—		210.9		
	d, 39	s			d, 39		
Factor IVB ^d 4b	83.97	96.3			208.8	—	
	d, 39	s			d, 39		
Factor IVC ^d 4b	84.06	98.2			208.7	-	
	d, 38	s			d, 38		
Factor IVA ^d 19	83.5		66.7			30.6	
	d, 51		d, 31			S	
Factor IVB ^d 19	83.7		67.4			29.4	
	d, 50		d, 31			S	

^{*a*} For best consistency, the δ values for the isomers of Factor IV have been set by matching one sharp signal in our spectra, *e.g.* from C-10, with the corresponding signal reported earlier.² However, due to the small scale involved, all the sample from each preparation was used for NMR and the concentration varied which contributes to the small differences in the δ values in the two pairs of samples. ^{*b*} In CDCl₃. ^{*c*} In C₆D₆. ^{*d*} In D₂O-0.1% CF₃CO₂D.

Factor IVB. This gives a second set of much smaller signals alongside those from Factor IVB showing exactly the same pattern of doublets for the ketonic carbonyl group and C-1 and a singlet for C-10. In this case the signal from C-10 is substantially affected whilst the other two were almost identical to those from Factor IVB (Table 1). A considerable effort by NOE and ¹³C-labelling will be required to clarify these lower priority stereochemical points.

Evidence by ¹³C-labelling for methylation at C-17 of Factor IV, and so also in precorrin-4, was gained by preparing multiply $^{13}\text{C}\text{-labelled}$ precorrin-3A 17 from [4-13C]ALA 16 and [methyl-13C]-S-adenosyl-L-methionine (SAM) by using the necessary set of five isolated overproduced enzymes, ¹⁰ viz. ALA dehydratase, hydroxymethylbilane synthase, uro'gen III synthase and the two methylases.¹¹ The product was isolated as 18 after aromatisation and esterification. The ester 18 was hydrolysed and the octa-acid was converted into precorrin-4, again using [methyl-13C]SAM, by the foregoing enzyme system from P. denitrificans. As previously, this was isolated after aerial oxidation in the form of the isomeric Factors IVA and IVB 19. Importantly, the signal from C-17 in both isomers was a doublet (J 31 Hz) due to its direct connection to the newly introduced ¹³C-labelled fourth methyl group; 17-Me in Factor IVB gave a doublet (δ 20.5, J 31 Hz) and one leg of the corresponding doublet for Factor IVA was resolved from the overlapping 2-Me and 7-Me signals. This confirms that the fourth methyl group of precorrin-4 is indeed at C-17 and eliminates any possibility of rearrangement as precorrin-6x is formed from it. In addition the methyl group of the acetyl residue of 19 appeared as a strong singlet (Table 1).

The foregoing experiments provide rigorous additional evidence concerning key features of the structures of Factor IV 4a and so also of precorrin-4 5. Taken in combination with

the earlier studies,² these leave only such details as the stereochemistry at C-3 and C-8 in the various epimers to be elucidated by future work.

Grateful acknowledgement is made to J. Lunel, P. E. Bost and J.-C. Brunie for their interest and help, to J. Crouzet and B. Cameron for providing genetic material and also to the SERC, Zeneca, Hoffmann-La Roche, Roche Products and Rhône-Poulenc Rorer for financial support.

Received, 29th September 1993; Com. 3/05870K

Footnote

⁺ Precorrin-3A was previously referred to as simply precorrin-3 but since the discovery that the subsequent intermediate is also at the trimethylated stage, these two intermediates should be called precorrin-3A and precorrin-3B respectively.⁶

References

- 1 L. Debussche, D. Thibaut, B. Cameron, J. Crouzet and F. Blanche, J. Bacteriol., 1993, 175, 7430.
- 2 D. Thibaut, L. Debussche, D. Fréchet, F. Herman, M. Vuilhorgne and F. Blanche, J. Chem. Soc., Chem. Commun., 1993, 513.
- 3 D. Thibaut, F. Blanche, L. Debussche, F. J. Leeper and A. R. Battersby, Proc. Natl. Acad. Sci. USA, 1990, 87, 8800.

- 4 D. Thibaut, F. Kiuchi, L. Debussche, F. J. Leeper, F. Blanche and A. R. Battersby, J. Chem. Soc., Chem. Commun., 1992, 139.
- 5 D. Thibaut, F. Kiuchi, L. Debussche, F. Blanche, M. Kodera, F. J. Leeper and A. R. Battersby, J. Chem. Soc., Chem. Commun., 1992, 982.
- 6 L. Debussche, D. Thibaut, M. Danzer, F. Debu, D. Fréchet, F. Herman, F. Blanche and M. Vuilhorgne, J. Chem. Soc., Chem. Commun., 1993, 1100.
- 7 A. R. Battersby C. J. R. Fookes, M. J. Meegan, E. McDonald and H. K. W. Wurziger, J. Chem. Soc., Perkin Trans. 1, 1981, 2786.
- 8 A. R. Battersby, M. Ihara, E. McDonald, J. Saunders and R. J. Wells, J. Chem. Soc., Perkin Trans. 1, 1976, 283.
- 9 A. R. Battersby, E. Hunt, E. McDonald, J. B. Paine III and J. Saunders, J. Chem. Soc., Perkin Trans. 1, 1976, 1008. 10 N. P. J. Stamford, A. I. D. Alanine, A. R. Pitt, J. Crouzet, B.
- Cameron and A. R. Battersby, in preparation.
 11 F. Blanche, L. Debussche, D. Thibaut, J. Crouzet and B. Cameron, J. Bacteriol., 1989, 171, 4222; D. Thibaut, M. Coulder, J. Crouzet, L. Debussche, B. Cameron and F. Blanche, J. Bacteriol., 1990, 172, 6245.