
Stephen C. Bennett, Mark A. Phipps and Michael J. Went*

University Chemical Laboratory, Canterbury, Kent, UK CT2 7NH

Treatment of $[Co_2(\mu-HOCH_2C=CCH_2OH)(CO)_6]$ in Me₂S with HBF₄·OEt₂ affords the stable salt $[Co_2(\mu-Me_2SCH_2C=CCH_2SMe_2)(CO)_6][BF_4]_2$ which reacts with secondary amines to afford $[Co_2(\mu-R_2NCH_2C=CCH_2NR_2)(CO)_6]$ (R = Et or Ph), while treatment of $[Co_2(\mu-HOCH_2C=CCH_2OH)(\mu-dppm)_2(CO)_2]$ [dppm = bis(diphenylphosphino)methane] with HBF₄·OEt₂ affords a stable dicarbenium complex $[Co_2(\mu-H_2CC=CCH_2)(\mu-dppm)_2(CO)_2]$ [BF₄]₂ which forms adducts with pyridine and triphenylphosphine.

The ability of hexacarbonyldicobalt fragments to stabilise propynyl cations is of considerable synthetic utility.¹ We have recently reported the preparation of linear and cyclic acetylenic thioethers *via* the acid-catalysed reaction of $[Co_2(\mu HOCH_2C=CCH_2OH)(CO)_6]$ 1 with thiols and dithiols in a double Nicholas reaction.^{2,3} Acid catalysis is however unsuit-

able for synthesising more basic amine difunctionalised alkynes. Monofunctionalised amine alkyne complexes have been prepared by reaction of $[Co_2(\mu-HC=CCH_2)(CO)_6]BF_4$ or $[Mo_2(\mu-HC=CCH_2)(CO)_4(\eta^5-C_5H_5)_2]BF_4$ with primary and secondary amines.⁴ In an attempt to prepare [Co₂(µ- $Ph_2NCH_2C=CCH_2NPh_2)(CO)_6$ 2, a large excess of $HBF_4 \cdot OEt_2$ was added to a diethyl ether solution of 1 to form a red suspension which was washed with diethyl ether at -50 °C and then treated with HNPh₂. Work-up afforded a mixture of 2, $[Co_2(\mu-HOCH_2C\equiv CCH_2NPh_2)(CO)_6]$ 3 and 4.[†] This result indicates the possible intermediacy of [Co₂(µ- $H_2CC \equiv CCH_2)(CO)_6]^{2+}$ and similar evidence has been obtained from the reaction of $[Co_2(\mu-PhCH_2OCH_2C)]^{2+}$ $CCH_2OCH_2Ph)(CO)_6$ with nucleophiles in the presence of BF₃·OEt₂ at low temperature.⁵ A cleaner reaction would be expected if the intermediate dication could be isolated and purified. Although $[Mo_2(\mu-H_2CC=CCH_2)(CO)_4(\eta^5 (C_5H_5)_2]^{2+}$ has been characterised,⁶ so far $[Co_2(\mu-H_2CC=$ CCH_2 (CO)₆]²⁺ has not been isolated. A bis(9-fluoreniumyl) ethyne ditetrafluoroborate-ethyne-hexacarbonyldicobalt complex has recently been reported and is found to be unstable at room temperature.7

It has been shown that $[Co_2(\mu-HC=CCH_2)(CO)_6]BF_4$ can be stabilised by reaction with dimethyl sulfide to afford $[Co_2(\mu-HC=CCH_2SMe_2)(CO)_6]BF_4$, which is however still reactive with respect to nucleophilic attack.⁸ Protonation of 1 in SMe₂ with HBF₄·OEt₂ affords $[Co_2(\mu-Me_2SCH_2C=CCH_2SMe_2)(CO)_6][BF_4]_2$ 5 in high yield as a thermally stable orange solid (see Scheme 1) which can be stored in the air for over a year. Reaction of 5 with HNPh₂ affords 2, while reactions with HNEt₂ and EtSH afford $[Co_2(\mu-Et_2NCH_2-C=CCH_2SEt_2)(CO)_6]$ 6⁹ and $[Co_2(\mu-EtSCH_2C=C-CH_2SEt)(CO)_6]$, 7² respectively.

An alternative approach is to improve the ability of the dicobalt centres to stabilise positive charge by substitution with phosphine ligands. Protonation of $[Co_2(\mu-HOCH_2C\equiv CCH_2OH)(\mu-dppm)_2(CO)_2]$ 8 [dppm = bis(diphenylphosphino)methane] with HBF₄·OEt₂ affords $[Co_2(\mu-H_2CC\equiv CCH_2)(\mu-dppm)_2(CO)_2][BF_4]_2$ 9 in high yield. The spectator role of the BF₄⁻ counterions was confirmed by the observation of a single resonance in the ¹⁹F NMR spectrum. The ¹H NMR spectrum of 9 reveals that the -CH₂⁺ group is not rotating on the NMR timescale as two distinct methylene resonances are observed and the presence of two signals in the ³¹P{¹H} NMR spectrum indicates that migration between the cobalt centres is also slow. Reaction of compound 9 with pyridine or triphenylphosphine affords 10 and 11, respectively.

In conclusion compound 5 is a stabilised dicarbenium complex and compound 9 are the first example of a stable dicarbenium dicobalt complex and both will provide new routes to difunctionalised alkynes.

Received, 3rd September 1993; Com. 3/05302D

226

Footnote

† Selected spectroscopic data: Compound 2: 1H NMR (CDCl₃) δ 7.3–6.9 (m, 20H, Ph) and 5.24 (s, 4H, CH₂NPh₂); $^{13}C{^{1}H}$ NMR (CDCl₃) δ 199.3 (CO), 147–118 (Ph), 94.6 (C₂), 55.8 (CH₂NPh₂). Compound 3: v_{CO}/cm⁻¹ (CH₂Cl₂) 2088m, 2048vs and 2022s; ¹H NMR (CDCl₃) & 7.3-7.0 (m, 10H, Ph), 5.24 (s, 2H, CH₂), 4.24 [d, 2H, CH_2OH , J_{HH} 6.6 Hz] and 1.37 [t, 1H, OH, J_{HH} 6.6 Hz]; ¹³C{¹H} NMR (CDCl₃) δ 199.4 (CO), 147–120 (Ph), 98.0 (\equiv CCH₂OH), 91.7 (\equiv CCH₂NPh₂), 63.1 (CH₂OH), 55.4 (CH₂NPh₂). EI mass spectrum: m/z 495, 467, 439, 411, 383, 355 (M⁺ – nCO, n = 1–6). Compound 4: v_{CO} /cm⁻¹ (light-petroleum ether) 2093m, 2056vs, 2032s and 2025s, ¹H NMR (CDCl₃) δ 7.3–6.9 (m, 20H, Ph), 5.18 (s, 4H, CH₂NPh₂) and 4.18 (s, 4H, CH₂O); ¹³C{¹H} NMR (CDCl₃) δ 199.3 (CO), 147-120 (Ph), 93.8, 92.3 (C₂), 71.5 (CH₂O), 55.1 (CH₂NPh₂); FAB mass spectrum: m/z 1029 (M⁺ + H). Compound 5: v_{CO}/cm^{-1} (Me₃CN) 2110m, 2075s and 2049s; ¹H NMR (CD₃CN) δ 4.90 (s, 4H, CH₂) and 3.05 (s, 12H, Me); ${}^{13}C{}^{1H}$ NMR (CD₃CN) δ 198.2 (CO), 82.9 (C₂), 49.9 (CH₂), 27.1 (Me). Compound 8: v_{CO}/cm^{-1} (KBr) 1915s and 1905s. Compound 9: v_{CO}/cm^{-1} (CH₂Cl₂) 2056m and 2038s; ¹H NMR (CD₂Cl₂) δ 7.72–6.98 (m, 40H, Ph), 6.13 (s br, 2H, CH₂), 5.44–5.39 (m, 2H, PCH₂P), 4.35 (s, br, 2H, CH₂), 4.29-4.14 (m, 2H, PCH₂P); ¹³C{¹H} NMR (CD₃CN) 8 195.1 (CO), 137.0-128.4 (Ph), 123.0 [d of d, C=C, J_{PC} 12 and 31 Hz], 86.3 (CH₂), 44.6 [t, PCH₂P, J_{PC} 23 Hz];

 $^{31}P{^{1}H} NMR (CD_2Cl_2) 34.4 (s br) and 9.9 (s br). Compound 10:$ v_{CO}/cm^{-1} (CH₂Cl₂) 1988s. Compound 11: v_{CO}/cm^{-1} (CH₂Cl₂) 1979s. FAB mass spectrum: m/z 1605 (M⁺ –BF₄).

References

- 1 K. M. Nicholas, Acc. Chem. Res., 1987, 20, 207.
- 2 S. C. Bennett, A. Gelling and M. J. Went, J. Organomet. Chem., 1992, 439, 189.
- 3 A. Gelling, G. F. Mohmand, J. C. Jeffery and M. J. Went, J. Chem. Soc., Dalton Trans, 1993, 1857.
- 4 M. Gruselle, V. Philomin, F. Chaminant, G. Jaouen and K. M. Nicholas, J. Organomet. Chem., 1990, 399, 317.
- 5 S. Takano, T. Sugihara and K. Ogasawara, *Synlett*, 1992, 70.
 6 O. A. Reutov, I. V. Barinov, V. A. Chertkov and V. I. Sokolov, J. Organomet. Chem., 1985, 297, C25.
- 7 M. Buchmeiser and H. Schottenberger, Organometallics, 1993, 12, 2472.
- 8 H. El-Almouri, M. Gruselle, G. Jaouen, J. C. Daran and J. Vaissermann, *Inorg. Chem.*, 1990, **29**, 3238.
- 9 G. Cetini, G. R. Rossetti and E. Sappa, J. Organomet. Chem., 1967, 8, 149.