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Evidence for a (r-Allyl)palladium Intermediate in the Quinone-based Palladium-catalysed

Allylic Acetoxylation

Helena Grennberg,* Vanessa Simon and Jan-E. Béackvall*
Department of Organic Chemistry, University of Uppsala, Box 531, S-751 21 Uppsala, Sweden

The mechanism of the quinone-based palladium-catalysed allylic acetoxylation of cyclohexene is studied using )
1,2-dideuteriocyclohexene (55-70% D) as substrate; the distribution of the deuterium label in the product, determined
by 'H NMR spectroscopy, is that expected for a (n-allyl)palladium intermediate.

Palladium-catalysed allylic oxidation has developed into a
synthetically useful method. In particular, cyclic olefins are
oxidised to their corresponding allylic acetates in excellent
yields and high selectivity employing p-benzoquinone (BQ) as
stoichiometric oxidant or electron-transfer mediator [eqn.
(1)].! The mechanism of this Pdl-catalysed transformation has
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been subject to debate, and two alternative principal pathways
have been put forward (Scheme 1).26 One mechanism
involves formation of a (m-allyl)palladium intermediate via
allylic C-H bond activation’ followed by a nucleophilic attack
by acetate (path A). The other proceeds via an acetoxypalla-
dation-B-elimination sequence (path B).2-4

The mechanism seems to depend upon both the substrate
and the oxidation system.2 Thus, Winstein? and Henry*
obtained results that indicated an acetoxypalladation pathway
(Scheme 1, path B) when employing Pd(OAc), (stoichio-
metric) or PdCl,-CuCl, as oxidants, respectively. On the
other hand, Wolfe> and Frankel® proved that a m-allyl route
(Scheme 1, path A) predominates with other reoxidation
systems. Although the quinone-based allylic acetoxylation
[egn. (1)] has been assumed to proceed via a (w-allyl)palla-
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Scheme 1 (rt-Allyl) route (A) vs. oxypalladation route (B) in allylic
acetoxylation

dium(m) intermediate,! conclusive evidence for such a
mechanism is lacking. In this communication, we provide
evidence for the (m-allyl) route in the allylic acetoxylation of
cyclohexene.

To distinguish between the two mechanistic pathways
(Scheme 1), a symmetrically deuteriated cyclohexene, 1,2-
dideuteriocyclohexene 1 was used as substrate.* Palladium-
catalysed allylic oxidation of 1 employing Pd(OAc), as
catalyst and p-benzoquinone (2 equiv.) as oxidant in acetic
acid! afforded a 1 : 1 mixture of the deuteriated products 2 and
3, as determined by 'H NMR spectroscopy. The same result
was obtained when employing catalytic amounts of p-benzo-
quinone with MnO, as the oxidant. The results are sum-
marised in Table 1.
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In Scheme 2, the expected outcome of an allylic acetoxyla-
tion of 1,2-dideuteriocyclohexene is shown. For both mechan-
isms the initial step would be a coordination of palladium(ir) to
the double bond to give 4. Then, either cleavage of the
activated allylic C-H bond’ to yield a (m-allyl)palladium
complex 5, or a trans attack? by acetate to yield 6 occurs. Both
pathways would yield a dideuterated 1-acetoxy-2-cyclohexene
with the deuterium label intact at C-2. If neglecting the
secondary isotope effect,10 the (w-allyl) pathway would give
equal amounts of the products 2 and 3. The acetoxypallada-
tion pathway should, on the other hand, yield only the
1,2-dideuterated allylic acetate 2. For an olefin containing less
deuterium, the reasoning is analogous, since the amount of
deuterium at position 2 in the product always reflects the
degree of deuteration of the olefin.¥ In Table 1, the
theoretical distribution of the deuterium label for the two
pathways have been calculated.§ The observed distribution is
in excellent agreement with that expected from a mechanism
involving a (m-allyl)palladium intermediate.
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Table 1 Some reaction conditions for the allylic acetoxylation of 1,2-dideuteriocyclohexene (55-70% D)a-3

HNMR (3-H:2-H:1-H)®

% Pd(OAc), Oxidant 7°C % Di n-Allyle Acetoxypalladationd Observede

100 Pdiie 60 55 1.61:1:1.61 2.22:1:1 1.64:1:1.64
5 BQ (200%) 60 65 1.93:1:1.93 2.70:1:1 1.94:1:1.97
5 BQ(200%) 25 1.88:1:1.84
1 MnO, (110%) 60 70 2.17:1:2.17 3.33:1:1 2.33:1:2.22
2 MnO, (110% ) 60 2.29:1:2.22

7 The reactions were carried out on a 0.25 mmol scale in reagent grade acetic acid. # The integral of 2-H of 1l-acetoxy-2-cyclohexene
was used to normalise the integrals of protons 1- and 3-H.§ ¢ Calculated values. ¢ Estimated error +0.02. ¢ No reoxidant for Pdo.

f See ref. 1a,b.
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Footnotes

+ An investigation of a palladium-mediated allylic acetoxylation with
HNO,-HNO;-Hg(OAc), as reoxidation system using 3,3,6,6-
tetradeuteriocyclohexene was carried out by Wolfe er al.5¢

1 The amount of deuterium (xp) in the two vinylic positions was
determined by 'H NMR spectroscopy from the ratio of the relative
integral of the vinylic signal ([.) to that of the non-deuteriated
compound (which is 2). Thus xp, can be defined by xp = 1 — (Ler/2),
and vary between 0 and 1, with the latter figure representing complete
deuteriation in both vinylic positions, i.e. 1,2-dideuteriocyclohexene.
§ The mechanism involving acetoxypalladation would give an 'H
NMR integration ratio for protons 3-H, 2-H and 1-H of 1-acetoxy-2-
cyclohexene of 1: (1 — xp) : (1 — xp), Where xp is the relative amount
of deuterium in the vinylic position of the starting cyclohexene.i For a
(m-allyl)palladium mechanism the corresponding ratio would be (2 —
xp)2:(1 — xp):(2 — xp)/2. In calculating the theoretical distributions
of the label (Table 1) the presence of mono- and non-deuteriated
cyclohexene in addition to dideuteriated material has been accounted
for.

1 Recently, a palladium-mediated allylic amination was reported that
most likely proceed via a (m-allyl)palladium intermediate: C. H.
Heathcock, J. A. Stafford and D. L. Clark, J. Org. Chem., 1992, 57,
2575.
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