Evidence for a $(\pi$ -Allyl)palladium Intermediate in the Quinone-based Palladium-catalysed Allylic Acetoxylation

Helena Grennberg,* Vanessa Simon and Jan-E. Bäckvall*

Department of Organic Chemistry, University of Uppsala, Box 531, S-751 21 Uppsala, Sweden

The mechanism of the quinone-based palladium-catalysed allylic acetoxylation of cyclohexene is studied using 1,2-dideuteriocyclohexene (55–70% D) as substrate; the distribution of the deuterium label in the product, determined by 1H NMR spectroscopy, is that expected for a (π -allyl)palladium intermediate.

Palladium-catalysed allylic oxidation has developed into a synthetically useful method. In particular, cyclic olefins are oxidised to their corresponding allylic acetates in excellent yields and high selectivity employing *p*-benzoquinone (BQ) as stoichiometric oxidant or electron-transfer mediator [eqn. (1)].¹ The mechanism of this Pd^{II}-catalysed transformation has

been subject to debate, and two alternative principal pathways have been put forward (Scheme 1).^{2–6} One mechanism involves formation of a (π -allyl)palladium intermediate *via* allylic C–H bond activation⁷ followed by a nucleophilic attack by acetate⁸ (path A). The other proceeds *via* an acetoxypalladation- β -elimination sequence (path B).^{2,4}

The mechanism seems to depend upon both the substrate and the oxidation system.² Thus, Winstein³ and Henry⁴ obtained results that indicated an acetoxypalladation pathway (Scheme 1, path B) when employing Pd(OAc)₂ (stoichiometric) or PdCl₂-CuCl₂ as oxidants, respectively. On the other hand, Wolfe⁵ and Frankel⁶ proved that a π -allyl route (Scheme 1, path A) predominates with other reoxidation systems. Although the quinone-based allylic acetoxylation [eqn. (1)] has been assumed to proceed *via* a (π -allyl)palla-

Scheme 1 (π -Allyl) route (A) vs. oxypalladation route (B) in allylic acetoxylation

dium(II) intermediate,¹ conclusive evidence for such a mechanism is lacking. In this communication, we provide evidence for the $(\pi$ -allyl) route in the allylic acetoxylation of cyclohexene.

To distinguish between the two mechanistic pathways (Scheme 1), a symmetrically deuteriated cyclohexene, 1,2dideuteriocyclohexene 1 was used as substrate.^{9†} Palladiumcatalysed allylic oxidation of 1 employing $Pd(OAc)_2$ as catalyst and *p*-benzoquinone (2 equiv.) as oxidant in acetic acid¹ afforded a 1:1 mixture of the deuteriated products 2 and 3, as determined by ¹H NMR spectroscopy. The same result was obtained when employing catalytic amounts of *p*-benzoquinone with MnO_2 as the oxidant. The results are summarised in Table 1.

In Scheme 2, the expected outcome of an allylic acetoxylation of 1,2-dideuteriocyclohexene is shown. For both mechanisms the initial step would be a coordination of palladium(II) to the double bond to give 4. Then, either cleavage of the activated allylic C-H bond⁷ to yield a $(\pi$ -allyl)palladium complex 5, or a *trans* attack⁴ by acetate to yield 6 occurs. Both pathways would yield a dideuterated 1-acetoxy-2-cyclohexene with the deuterium label intact at C-2. If neglecting the secondary isotope effect,¹⁰ the (π -allyl) pathway would give equal amounts of the products 2 and 3. The acetoxypalladation pathway should, on the other hand, yield only the 1,2-dideuterated allylic acetate 2. For an olefin containing less deuterium, the reasoning is analogous, since the amount of deuterium at position 2 in the product always reflects the degree of deuteration of the olefin.[‡] In Table 1, the theoretical distribution of the deuterium label for the two pathways have been calculated.§ The observed distribution is in excellent agreement with that expected from a mechanism involving a (π -allyl)palladium intermediate.¶

Table 1 Some reaction conditions for the allylic acetoxylation of 1,2-dideuteriocyclohexene (55-70% D)a‡

		Oxidant	T/°C	% D‡	¹ H NMR (3-H : 2-H : 1-H) ^b		
%1	Pd(OAc) ₂				π -Allyl ^c	Acetoxypalladation ^d	Observed ^e
100		Pd ^{ile}	60	55	1.61:1:1.61	2.22:1:1	1.64:1:1.64
5 5		BQ (200%) BQ (200%)	60 25	65	1.93:1:1.93	2.70:1:1	1.94 : 1 : 1.97 1.88 : 1 : 1.84
1 2		MnO ₂ (110%) ^f MnO ₂ (110%) ^f		70	2.17:1:2.17	3.33:1:1	2.33:1:2.22 2.29:1:2.22

^{*a*} The reactions were carried out on a 0.25 mmol scale in reagent grade acetic acid. ^{*b*} The integral of 2-H of 1-acetoxy-2-cyclohexene was used to normalise the integrals of protons 1- and 3-H.§ ^{*c*} Calculated values. ^{*d*} Estimated error ± 0.02 . ^{*e*} No reoxidant for Pd⁰. ^{*f*} See ref. 1*a,b*.

Financial support from the Swedish Natural Science Research Council is gratefully acknowledged.

Received, 7th October 1993; Com. 3/06003J

Footnotes

[†] An investigation of a palladium-mediated allylic acetoxylation with HNO_2 - HNO_3 - $Hg(OAc)_2$ as reoxidation system using 3,3,6,6-tetradeuteriocyclohexene was carried out by Wolfe *et al.*⁵⁶

[‡] The amount of deuterium (x_D) in the two vinylic positions was determined by ¹H NMR spectroscopy from the ratio of the relative integral of the vinylic signal (I_{rel}) to that of the non-deuteriated compound (which is 2). Thus x_D can be defined by $x_D = 1 - (I_{rel}/2)$, and vary between 0 and 1, with the latter figure representing complete deuteriation in both vinylic positions, *i.e.* 1,2-dideuteriocyclohexene. § The mechanism involving acetoxypalladation would give an ¹H NMR integration ratio for protons 3-H, 2-H and 1-H of 1-acetoxy-2cyclohexene of $1:(1 - x_D):(1 - x_D)$, where x_D is the relative amount of deuterium in the vinylic position of the starting cyclohexene. ‡ For a $(\pi$ -allyl)palladium mechanism the corresponding ratio would be $(2 - x_D)/2:(1 - x_D):(2 - x_D)/2$. In calculating the theoretical distributions of the label (Table 1) the presence of mono- and non-deuteriated for.

¶ Recently, a palladium-mediated allylic amination was reported that most likely proceed via a $(\pi$ -allyl)palladium intermediate: C. H. Heathcock, J. A. Stafford and D. L. Clark, J. Org. Chem., 1992, 57, 2575.

References

- (a) A. Heumann and B. Åkermark, Angew. Chem., Int. Ed. Engl., 1984, 23, 453; (b) S. Hansson, A. Heumann, T. Rein and B. Åkermark, J. Org. Chem., 1990, 55, 975; (c) J. E. McMurry and P. Kocovsky, Tetrahedron Lett., 1984, 25, 4187; (d) J. E. Bäckvall, R. B. Hopkins, H. Grennberg, M. M. Mader and A. K. Awasthi, J. Am. Chem. Soc., 1990, 112, 5160.
- 2 P. M. Henry, in *Palladium-Catalyzed Oxidation of Hydrocarbons*, Reidel Publishing Co, Dordrecht, 1980, pp. 103.
- 3 W. Kitching, Z. Rappoport, S. Winstein and W. G. Young, J. Am. Chem. Soc., 1966, 88, 2054.
- 4 P. M. Henry and G. A. Ward, J. Am. Chem. Soc., 1971, 93, 1494.
- 5 (a) S. Wolfe and P. G. C. Campbell, J. Am. Chem. Soc., 1971, 93, 1499; (b) 1497.
- 6 E. N. Frankel, J. Org. Chem., 1975, 40, 3247.
- 7 R. G. Brown, R. V. Chaudhar and J. M. Davidsson, J. Chem. Soc., Dalton Trans., 1977, 176; B. M. Trost and P. J. Metzner, J. Am. Chem. Soc., 1980, 102, 3572; J. E. Bäckvall, K. Zetterberg and B. Åkermark, in Inorganic Reactions and Methods, ed. A. P. Hagen, VCH, 1991, vol 12A, 1991, pp. 123.
- Hagen, VCH, 1991, vol 12A, 1991, pp. 123.
 8 J. E. Bäckvall, R. E. Nordberg, E. Björkman, and C. Moberg, J. Chem. Soc., Chem. Commun., 1980, 943; J. E. Bäckvall, R. E. Nordberg and D. Wilhelm, J. Am. Chem. Soc., 1985, 107, 6892; H. Grennberg, V. Langer and J. E. Bäckvall, J. Chem. Soc., Chem. Commun., 1991, 1190.
- 9 G. Ahlgren, B. Åkermark and K. I. Dahlquist, *Acta Chem. Scand. B.*, 1968, **22**, 1129.
- 10 For a related example of secondary isotope effects in copper chemistry see: H. L. Goering and V. D. Singleton Jr., J. Am. Cem. Soc., 1976, 98, 7854.