Photochemical Rearrangement of 2,3-Dihydroisoxazoles. Formation of Stable Azomethine Ylides *via* **Acyl Aziridines as Intermediates**

Eloisa Lopez-Calle and Wolfgang Eberbach"

lnstitut fur Organische Chemie und Biochemie der Universitat Freiburg, Albertstrasse 21, 0-791 04 Freiburg, Germany

Irradiation of the 2,3-annulated 2,3-dihydroisoxazoles **3** affords azomethine ylides **4** as isolable compounds, which on heating are transformed into the tetrahydroindolizines **7** and *8.*

Although the photochemical behaviour of five-membered heteroaromatic systems as well as their dihydro analogues has been extensively studied,¹ including the excited state reactions of isoxazoles and **4,5-dihydroisoxazoles,2~3** investigations with 2,3-dihydroisoxazoles are still lacking.4 We now describe our results with the annulated 2,3-dihydroisoxazoles 3a-d, which are obtained in 60-80% yield by regioselective cycloadditions of the cyclic nitrone **1** with the alkynes **2a-d.**

Irradiation of 4×10^{-3} mol dm⁻³ solutions of **3a** in benzene with a high-pressure mercury lamp (Pyrex filter, $\lambda > 280$ nm) afforded a crystalline product in 88% yield which was identified as the azomethine ylide **4a.** Under similar conditions the tert-butyl derivative **3b** is likewise transformed into **4b** (Table 1). In the case of the mono- and di-ester substituted compounds **3c** and **3d,** respectively, the photolysis was performed using a Vycor filter and diethyl ether as solvent *(h* > 230 nm; for UV absorptions of **3a-d** see Table 1). Again compounds with dipolar structures, **4c** and **4d,** were isolated as the main products.? The lower yield, especially of **4c,** is mainly due to product loss during the chromatographic work-up. According to ¹H NMR analysis prior to the purification procedure, both **4c** and **4d** are formed in about 80 and **70%** yield, respectively. Furthermore, careful inspection of the spectra of the **a-c** series revealed additional signals which are compatible with the l-azabicyclo[4.1 .O]heptene structure **9** [see below and Scheme 2; the ratio **4** : **9** was 10 : 1 **(a),** 60 : 1 **(b),** $\overline{6}$: 1 (c)]; unfortunately all attempts at isolation have failed so far.

The azomethine ylides **4** are unambiguously characterised by correct elemental analyses and/or mass spectra as well as by the spectroscopic data;[†] additional confirmation of the structures is based on their chemical reactivity (see below).

With the successful separation of **4a-d** the first representatives of isolable azomethine ylides are described which bear stabilizing groups only at one terminus of the 1,3-dipolar system. The few other stable systems, which have π -substituents on both sides, are derived from conjugated iminium compounds like isoquinolinium or dihydroisoquinolinium ylides⁵ as well as from non-cyclic azomethine ylides.⁶

The remarkable stability of **4a-d** is reflected by their unusually low reactivity with dipolarophiles; *e.g.* cycloaddition experiments with **4a** using dimethylacetylene dicarboxylate or N -phenylmaleimide as 2π -components were unsuccessful; only 4-methyltriazoline-3,5-dione (MTAD) gave rise to a

Scheme 2

^a Irradiations were carried out with 100 ml of degassed solutions of the dihydroisoxazoles with a 150 W high-pressure mercury lamp at 20° C. b Isolated yields after chromatographic purification.

Table 2 Thermal transformation of **4** into **7** and **8**

4	Reaction time ^{a,c}	$7^{b,c}$ (%)	$8^{b,c}$ (%)	
4a 4d	6 h $[42 h]$ 4b $3.5h[5 \text{ days}]$ 4c $1.5 h [64 h]$ 3 h [20 h]	71 [48] 62[56]	18 [18] 65 [55] 69 [59]	

^a Reflux in toluene. ^{*b*} % Yield after chromatographic purification. simultaneous irradiation with a 500 W lamp. Values in square brackets refer to the thermolysis of **3a-d** under

product, namely 5a, formed in 78% yield (CH₂Cl₂, room temp., 10 min) by a Diels-Alder reaction and subsequent H-shift.

On heating **4a-d** in refluxing toluene, a rearrangement took place leading to the tetrahydroindolizines **7a, b** and **Sa-d,** respectively (see Table 2). The possible reaction pathway includes a 6π -suprafacial 1,4-H-migration to the enamines **6a-d** followed by cyclodehydration (Scheme 1).

Intermediates like *6* have already been suggested for the formation of the corresponding pyrrole derivatives upon thermolysis **of** simple 2,3-dihydroisoxazoles **.4,7** In contrast with these results, direct heating of **3a-d** in boiling toluene gave only decomposition products. However, a one-pot transformation of **3** into **7-8** can be accomplished by heating a toluene solution of **3a-d** with simultaneous irradiation with a 500 **W** lamp (Table 2).

According to these observations, but in disagreement with results from other 2,3-dihydroisoxazoles,^{4,8} a photochemical step has to be involved during the rearrangement $3 \rightarrow 4$. Thus a mechanism is proposed which is initiated by a light-induced dihydroisoxazole \rightarrow acyl-aziridine isomerisation as the first, symmetry-allowed step $(3 \rightarrow 9)$ ^{\dagger} followed by ring opening to the iminium ylide **4** (Scheme 2).

Further evidence for this explanation has been obtained from independent photolysis experiments with **4a;** after illumination of 0.08 mmol of **4a** in 100 ml of benzene (Pyrex filter, 10 min) the 1H NMR spectrum **of** the crude reaction mixture indicated the presence of a 10 : 1 mixture **of** starting material **4a** and a minor compound; the new signals are fully consistent with the bicyclic aziridine structure **9a** [250 MHz, in CDCI3: 6 2.58 **(s,** CH3), 3.55 (m, 2H, 5-H), 3.79 (m, 2H, 2-H), 9.29 **(s,** CHO)] and have already been observed after the preparative irradiation of **3a** (see above).§ It is interesting that the 10 : 1 ratio of **4a** : **9a** corresponds remarkably well with the result obtained by photolysis of **3a** implying a photochemical equilibrium between **4** and **9.**

Financial support of this work by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

Received, 21st September 1993; Com. 31'0S685F

Foot notes

t Selected spectroscopic data, **4a:** 6~ (CDC13) 1.93, (m, 2 H, 3-H), 2.09 (m, 2 H, 4-H), 2.34 **(s,** Me), 2.91 (m, 2 H, 5-H), 3.90 (m, 2 H, (C-6), 123.0, (C-1'), 53.7 (C-2), 33.4 (C-5), 23.8 (Me), 21.5 (C-3), 17.6 (C-4); λ_{max}/nm (MeCN) 333 (ε 3500), 280 (ε 13500). 4b: δ_H (CDCl₃) 1.31 (CMe₃), 1.89 (m, 2 H, 3-H), 2.00 (m, 2 H, 4-H), 2.18 (s, Me), 2.81 (m, 2 H, 5-H), 3.67 (m, 2 H, 2-H), 9.41 (s, CHO). 4c: $\delta_{\rm H}$ $(CDCI₃)$ 1.88 (m, 2 H, 3-H), 2.02 (m, 2 H, 4-H), 2.32 (s, Me), 2.80 (m, 1 H, 5-H), 2.89 (m, 1 H, 5-H), 3.70 (s, OMe), 3.73 (m, 2 H, 2-H), 9.00 (s, CHO) . **4d:** δ_H (CDCl₃) 1.90 (m, 2H, 3-H), 2.03 (m, 2H, 4-H), 2.36 (s, Me), 2.87 (m, 2 H, 5-H), 3.67 **(s,** OMe), 3.81 (m, 2 H, 2-H), 3.84 **(s,** OMe). 2-H), 8.91 *(s, CHO)*; δ_C *(CDCl₃)* 186.6 *(C-2')*, 176.7 *(CHO)*, 140.3

\$ According to preliminary results with **3a,** the transformation into **4a** takes place with equal efficiency using acetone as solvent, hence supporting a reaction from the triplet excited state of **3.**

§ Relevant ¹H NMR absorptions (250 MHz, CDCl₃) of 9b: δ 2.41 (Me), 9.70 (CHO); **9c:** *b* 2.47 **(s,** Me), 3.57 (m, 2 **H,** 5-H), 3.90 (m, $2 \text{ H}, 2\text{ -H}, 3.73 \text{ (CO}_2\text{Me}), 9.53 \text{ (CHO)}$

References

- For leading references, see A. Lablache-Combier, in *Photochemistry of Heterocyclic Compounds,* ed. *0.* Buchardt, Wiley, New York, 1976, p. 123; **A.** Padwa, in *Rearrangements in Ground and Excited States,* ed. P. de Mayo, Academic Press, New York, 1980, vol. 3, p. 501.
- K. T. Potts, in *Comprehensive Heterocyclic Chemistry,* ed. A. R. Katritzky and C. W. Rees, Pergamon Press, London, 1984, vol. 6 pp. 12 and 36.
- $\overline{3}$ **Y.** Ito and T. Matsura, *Tetrahedron,* 1975, **31,** 1373.
- For a pertinent review on the chemistry of 2,3-dihydroisoxazoles, see **J.** P. Freeman, *Chem. Rev.,* 1983, **83,** 241.
- R. Huisgen and K. Niklas, *Heterocycles,* 1984, 22, 21, and references therein.
- J. Fleury, **J.** Schoeni, D. Clerin and H. Fritz, *Helv. Chim. Acta,* 1975, *58,* 2018; A. M. Trozzolo, T. M. Leslie, A. **S.** Sarpotdar, R. D. Small and G. J. Ferraudi, *Pure Appl. Chem.,* 1979, 51,261; N. Khan and D. A. Wilson, *J. Chem. Res.* (S), 1984,150; *R.* Grigg, J. F. Malone, T. Mongkolavssauaratana and *S.* Thianpatanagui, *J. Chem. SOC., Chem. Commun.,* 1986,421.
- R. Grigg, *Chem. Commun.,* 1966,607; G. Schmidt, H. U. Stracke and E. Winterfeldt, *Chem. Ber.,* 1970, **103,** 3196; I. Adachi, K. Harada, R. Miyazaki and H. Kano, *Chem. Pharm. Bull.,* 1974,22, 61; Y. Yu, M. Ohno and *S.* Eguchi, *Tetrahedron,* 1993, **49,** 823.
- G. **B.** Mullen, G. **A.** Bennett and **V. S.** Georgiev, *Liebigs Ann. Chem.,* 1990, 109.