Evidence for Concerted Extrusion of TeR₂ From Permethylscandocene Tellurolates

Warren E. Piers

Guelph- Waterloo Centre for Graduate Work in Chemistry, Guelph Campus, Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada NIG 2W1

Use of stereochemical probes shows that both the formation of permethylscandocene tellurolates *(via* tellurium insertion into Sc-C bonds) and the decomposition of permethylscandocene tellurolates *(via* extrusion of **TeR2)** proceed with retention of configuration in the probe, implying concerted transition states for both reactions.

The thermal decomposition of molecular metal tellurolate derivatives to binary metal tellurides represents a promising low-temperature route to these materials under controlled conditions. Homoleptic lanthanide, $\frac{1}{2}$ early metal² and group 12 metal3 tellurolates have been found to decompose *via* the stoichiometry shown in eqn. (1) but relatively little is known concerning the intimate mechanism of this reaction. We recently reported the decay **of** permethyl scandocene tellurolate derivatives as in eqn. **(l),4** a useful model for

$$
[M(ER)_2]_n \xrightarrow{\text{Heat}} [ME]_n + n ER_2 \tag{1}
$$

the decomposition of homoleptic metal tellurolate derivatives.

Using well known $1,2-[2H_2]$ -neohexyl stereochemical probes, we now report results which indicate that the extrusion of TeR2 from metal tellurolates proceeds *via* a concerted transition state.

The experiments reported herein are depicted in Fig. 1. In analogous reactivity patterns to those established for the insertion of olefins into the Zr-H bond of Schwartz's reagent, $[(C_5H_5)_2ZrHCl]_n$ ⁵ insertion of (E) -CH(D)=CHBu^t into the Sc-D bond of $[(C_5Me_5)_2ScD]^7$ results in diastereomerically pure *erythro-*[$(\tilde{C}_5\tilde{M}e_5)_2$ ScCH(D)CH(D)Bu^t], *erythro-*[²H₂]-**1**,† as determined by ¹H{²H} NMR spectroscopy $(^{3}J_{HH} = 15.1$ Hz). Although reversible β -elimination is likely occurring⁸ and represents an epimerization process, it fortunately is not

Fig. 1 *Reagents:* **i,** *E-CH(D)=CHBut,* **1 equiv.; ii, Te=PBug, 1 equiv.; iii,** *90°C,* **24 h; iv,** *hv,* 10 min. **Spectrum** *(A):* β -CH(D) **resonance** for *erythro-*[²H₂]-1; spectrum (*B*): α -CH(D) **resonance** for *erythro*-[²H₂]-2; spectra (*C*) and (*D*); *a-CH(D)* **resonances for** *erythro-[2H2]-2* **(left trace) and** *erythro,erythro-[2H4]-3-* **(right trace) after heating** and **irradiation, respectively. The intensities of the peaks have been adjusted to the same vertical scale and** do **not reflect relative amounts of the two species in solution.**

kinetically significant over the course of the several minutes necessary to perform subsequent manipulations. Insertion of tellurium into the Sc-C bond of erythro- $[2H_2]$ -1 using Te=P- $Buⁿ3$ as a tellurium transfer agent occurs rapidly and quantitatively with retention **of** stereochemistry to afford the tellurolate erythro- $[(C_5Me_5)_2$ ScTeCH(D)CH(D)Bu^t], erythro-[²H₂]-2, $(^3J_{\text{HH}}$ 13.6 Hz).[†] Tellurium insertion with retention is not surprising in view of the fact that the majority of insertion reactions take place via concerted transition states .9 However, this result conveniently allowed **us** to examine the stereochemistry associated with the more fundamentally interesting dialkyl telluride extrusion process leading to metal tellurides.

As indicated in Fig. 1, thermolysis of solutions of erythro- $[2H₂]$ -2 in the dark resulted in concerted elimination of the diastereoisomers of erythro, erythro-Te[CH(D)CH(D)Bu^t]₂, *(erythro,* erythro-[2H4]-3), with greater than 90% diastereoselectivity $(3J_{HH} = 13.4 \text{ Hz})\frac{3}{1}$ and concomitant production of the known telluride bridged dimer $[(C_5Me_5)_2$ - $ScTeSc(C_5Me_5)_2$ 4.4 The *meso-* and *rac-diastereoisomers of* erythro, erythro- $[2H_4]$ -3 were not distinguishable spectroscopically and the identity **of** this product was confirmed by independent synthesis of $[2H_0]$ -3.¹⁰ Although mechanisms involving initial homo- or hetero-lysis of the Te-C bond in erythro- $[2H_2]$ -2 are certainly plausible, our results suggest that the major pathway involves a bimolecular‡ concerted transition state leading to retention of configuration in erythro, erythro-[2H4]-3 such as that depicted in **I.**

We have previously shown that the extrusion reaction is reversed in a very facile photochemical reaction.4 When samples containing erythro, erythro-[2H4]-3 and **4** generated as described above were irradiated with **UV** light through a Pyrex filter for 10 minutes, almost complete conversion back to $[2H_2]$ -2 was observed. After this treatment, however, a 1:1 mixture of erythro- and threo- $[2H_2]$ -2 was found (Fig. 1). Notably, some epimerization was also seen in *erythro, erythro-* $[2H_2]$ -3 but not to the extent observed in $[2H_2]$ -2. These data

J. CHEM. SOC., CHEM. COMMUN., 1994

can be explained by either some epimerization process likely involving radicals or (since only one of the two Te-C bonds in erythro,erythro-[2H4]-3 is involved in the reaction with **4)** a concerted process involving inversion at carbon. We are currently designing experiments to distinguish between these two mechanisms.

The author thanks Mr Chris Barr for help with the $1H\{2H\}$ NMR experiments. Funding from the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

Received, *3rd* September *1993; Corn. 3/0530l F*

Footnotes

 \dagger ¹H{²H} NMR data for new compounds (400 MHz, C_6D_6 , δ in ppm). erythro-[²H₂]-1: [²H₂]-**2** C₅Me₅, δ 1.86; CMe₃, 1.19; α-CH(D) 1.08;
β-CH(D) 0.52, ^{3J}_{HH} = 15.1 Hz. erythro-[²H₂]-**2**: C₅Me₅, δ 1.94; CMe₃, 0.99; α -CH(D) 3.45; β -CH(D) obscured by residual PBuⁿ₃ resonances, ${}^{3}J_{\text{HH}} = 13.6 \text{ Hz}$. erythro, erythro-[²H₄]-3: CMe₃, δ 0.78; α -CH(D) 2.43; β -CH(D) 1.64, $\dot{M}_{HH} = 13.4 \text{ Hz}$. ¹³C(¹H) NMR data for [²H₀]-3 (50 MHz, C_6D_6 , δ in ppm): TeCH₂CH₂, δ 47.9; TeCH₂CH₂, -3.7; CMe₃, 28.8; CMe₃, 32.6.

\$ X-Ray structural analysis of the benzyl tellurolate derivative $(C_5Me_5)_2$ ScTeCH₂Ph showed a mononuclear structure in the solid state.¹¹

References

- 1 **A.** R. Strzelecki, P. **A.** Timinski, B. A. Helsel and P. A. Bianconi, *J.* Am. Chem. SOC., 1992, 114,3159.
- 2 V. Christou and J. Arnold, *J. Am. Chem. Soc.*, 1992, 114, 6240.
3 M. L. Steigerwald and C. R. Sprinkle, *J. Am. Chem. Soc.*, 1987. M. L. Steigerwald and C. R. Sprinkle, *J. Am. Chem. Soc.*, 1987, 109,7200.
- W. E. Piers, L. R. MacGillvray and M. Zaworotko, Organometallics, 1993, 12, 4723.
- 5 J. A. Labinger, in Comprehensive Organic Syntheis, ed. B. M. Trost and I. Fleming, Pergamon, Oxford, 1991, vol. 8, p. 667.
- A. Igau and J. A. Gladysz, Organometallics, 1991, 10, 2327.
- 7 M. E. Thompson, **S.** M. Baxter, **A.** R. Bulls, B. **J.** Burger, **M.** C. Nolan, B. D. Santarsiero, W. P. Schaefer and **J.** E. Bercaw, *J. Am. Chem. Soc.*, 1987, 109, 203.
- 8 B. J. Burger, M. E. Thompson, W. D. Cotter and **J.** E. Bercaw, *J.* Am. Chem. SOC., 1990,112,1566.
- 9 J. P. Collman, L. **S.** Hegedus, J. R. Norton and R. G. Finke, Principles and Applications *of* Organotransition Metal Chemistry, University Science Books, Mill Valley, CA, 1987, p. 355.
- 10 Using the method described in: D. J. L. Clive, P. C. Anderson, N. Moss and **A.** Singh, J. Org. Chem., 1982, 47, 1641.
- W. E. Piers, L. R. MacGillvray and M. Zaworotko unpublished results.