Chrymutasins: a New Type of Aglycone Related to Chartreusin; Novel Antitumour Antibiotics from a Mutant of *Streptomyces chartreusis*

Hideaki Uchida,*† Yasukazu Nakakita, Nobuyasu Enoki, Naoki Abe, Takehiko Nakamura and Masanobu Munekata

Pharmaceutical Research Laboratories, Sapporo Breweries Ltd. 10 Okatohme, Yaizu, Shizuoka, 425 Japan

The structure of chrymutasin A, B and C are determined from spectral studies, incorporation studies of ¹³C-labelled sodium acetates and an aglycone derivative.

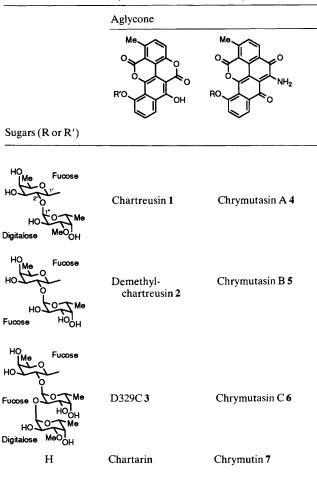
Having found that *Streptomyces chartreusis* D329 produced chartreusin, a glycosidic antitumour antibiotic, we tried to mutate the strain D329 with *N*-methyl-*N'*-nitro-*N*-nitrosoguanidine in order to obtain other antibiotics related to chartreusin. Among the related compounds to 1, elsamicin A² (related natural product) and IST-622³ (one of the semi-synthesized derivatives) have been clinically explored in phase studies.

From the analyses of mutant products, we found a mutant strain (D329-185 strain, FERM BP-3269) which produced demethylchartreusin 2^4 and D329C compound $3.^5$ As a result of further analysis of the other products in the fermentation broth of the mutant strain, three novel compounds, named as chrymutasin A 4, B 5 and C 6 were isolated. The results are unique from that of the parent strain. As an example of isolation from *ca*. 101 fermentation broth, 4 (97 mg), 5 (12 mg) and 6 (0.5 mg) were isolated by a combination of silica gel and ODS chromatography.

Compound 4, $C_{33}H_{33}O_{13}N$ {HR FAB-MS (pos.): m/z found 676.2039 (M + Na + H₂)⁺, calc. 676.2006}, a violet powder, showed characteristic UV absorption { λ_{max} nm (ε) in MeOH: 228 (16000), 243 (13000, sh.), 262 (12000), 385 (2600), 534 (5200), 572 (5600)}. Selected ¹H and ¹³C NMR data are shown in Table 1. It was assumed that the sugars of 4 and 1 were the same by comparison of their NMR data. The results of GC-MS analyses of TMS (trimethylsilyl) derivatives of the sugars of 4 and 1 showed the same chromatograms and MS fragment patterns. These results confirmed that the sugars of 4 consisted of one fucose and one digitalose. The attachment

Table 1 ¹H and ¹³C NMR data^a of chrymutasin A

	Chrymutasin A 4				
Position	1 H(δ , Hz)			¹³ C(δ)	
Aglycone					
ĩ				152.3	s
2	7.33	d	8.0	132.2	d
2 3	8.43	d	8.0	133.5	d
3a				125.6	s
4				179.0	s
5				147.7	s
5a				104.0	s
6				182.3	s
6a				135.0	s
7	8.40	d	8.0	121.2	d
8	7.54	t	8.0	130.9	d
9	7.73	d	8.0	119.6	d
10				156.1	s
10a				120.1	S
10b				146.2	s
12				159.1	s
12a				118.5	s
12b				134.0	s
12c				106.9	8
1-Me	2.79	s		23.9	q
5-NH ₂	9.1	br s			1
-	11.3	br s			


 a ^1H NMR: 400 MHz, $[^2\text{H}_5]\text{pyridine}, 50\ ^\circ\text{C}; \ ^{13}\text{C}$ NMR: 100 MHz, $[^2\text{H}_5]\text{pyridine}, 50\ ^\circ\text{C}.$

position (C-10) and sequence (aglycone-fucose-digitalose) were determined by NOESY experiments.[‡]

The constituent sugars of 5 and 6 were determined (shown in Table 2) with GC-MS analysis of the TMS derivatives of sugars in a manner similar to that previously discussed and in detailed comparison of NMR data with those of 2 and 3, respectively.

The aglycones from 4, 5 and 6 had the same retention time on HPLC, || and thereby it was confirmed that these three compounds had the same aglycone, named as chrymutin (7, 5-amino-10-hydroxy-1-methyl-12*H*-11-oxabenzo[*def*]chrysene-4,6,12-trione). Many quaternary carbons were present in the aglycone. Some carbons, bonding to ¹H through ¹J_{C-H}, ²J_{C-H} and ³J_{C-H} were revealed easily (by C-H COSY, C-H long range COSY), but other carbons were not assigned by normal NMR techniques. A previous report⁶ has described that chartarin (aglycone of 1) had been biosynthesized from polyketide as an early biosynthetic intermediate. In order to determine the aglycone structure, ¹³C-labelled **4** was prepared from the fermentation broth by adding [1-¹³C], [2-¹³C] and

 Table 2 Structures of chrymutasins and related compounds

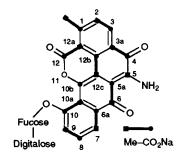


Fig. 1 Labelling pattern of 4

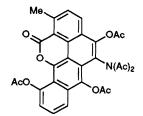


Fig. 2 Reductive acetylated derivative (8) of 7

 $[1,2^{-13}C_2]$ sodium acetates, respectively. From the ¹³C NMR spectrum, nine pairs of ¹³C-¹³C bonded directly from the labelled acetate and are summarized in Fig. 1. Furthermore, on account of LSPD (long-range selective proton decoupling) experiments from N-H, ${}^{2}J_{C-D}$ coupling and isotopic shift in ¹³C NMR with D_2O addition, all aglycone carbons were unambiguously determined and assigned.

Because of both very poor solubility of 7 in many organic solvents and confirmation of the quinone in 7, a reductive acetylated derivative 8 was synthesized and confirmed by ¹H NMR and MS** analysis.

Compound 4 showed the strongest cytotoxicities among 4, 5 and 6, and hence antitumour activities of 4 in vivo were assayed. Compound 4 showed that the T/C (survival time of test group/that of control one $\times 100$) value was 173% (Meth A fibrosarcoma cells and 4 were intraperitoninally given to mice; dose of 4: 20 mg kg⁻¹ × 4 days). However, the T/C of 1 was 150% for similar conditions.

Received, 14th July 1993; Com. 3/04141G

Footnotes

† Present address: Faculty of Pharmacy, Meijo University, Tempakuku, Nagoya 468, Japan.

 \ddagger Two pairs of protons with the NOEs were shown. δ 7.73 (aglycone 9-position) \leftrightarrow 5.75 (1'-position in fucose); δ 4.97 (2'-position in fucose) \leftrightarrow 6.36 (1"-position in digitalose).

§ C₃₂H₃₁O₁₃N; HR FAB-MS (neg.): *m*/*z* found 637.1791 (M[−]), calc. 637.1796.

¶ C₃₉H₄₃O₁₇N; HR FAB-MS (pos.): *m/z* found 820.2423 (M + Na)+ calc. 820.2428.

|| Column: Shiseido, Co., Ltd, CAPCELL PAK C₁₈, SG120 Å, 5 μm, ϕ 4.6 × 150 mm; mobile phase: MeCN-H₂O (1:1); flow rate: 1 ml \min^{-1} ; retention time: 8.3 min.

** $C_{30}H_{23}NO_{10}$; HR EI-MS: m/z found 557.1333 (M)+, calc. 557.1322; ¹H NMR (CDCl₃, 400 MHz, room temp.) δ: 8.00 (1H, d, J 8.2 Hz), 7.80 (1H, d, J 8.2 Hz), 7.78 (1H, dd, J 8.7, 1.2 Hz), 7.72 (1H, dd, J 8.7, 7.2 Hz), 7.41 (1H, dd, J 7.2, 1.2 Hz), 3.12 (3H, s), 2.74 (3H, s), 2.53 (3H, s), 2.48 (3H, s), 2.40 (6H, s).

References

- 1 B. E. Leach, K. M. Calhoun, L. E. Johnson, C. M. Teeters and W. G. Jackson, J. Am. Chem. Soc., 1953, 75, 4011.
- 2 M. Konishi, K. Sugawara, F. Kofu, Y. Nishiyama, K. Tomita, T. Miyaki and H. Kawaguchi, J. Antibiot., 1986, 39, 784; K. Sugawara, M. Tsunakawa, M. Konishi, H. Kawaguchi, B. Krishnan, H. Cun-heng and J. Clardy, J. Org. Chem., 1987, 52, 996.
- 3 K. Kon, H. Sugi, K. Tamai, Y. Ueda and N. Yamada, J. Antibiot., 1990, 43, 372.
- 4 Y. Aoyama, T. Katayama, M. Yamamoto, H. Tanaka and K. Kon, J. Antibiot., 1992, 45, 875.
- 5 H. Uchida, Y. Nakakita, N. Enoki, N. Abe, T. Nakamura and M.
- Munekata, J. Antibiot., 1993, **46**, 1611. 6 P. L. Canham, L. C. Vining, A. G. McInnes, J. A. Walter and J. L. C. Wright, Can. J. Chem., 1977, 55, 2450.